Do you want to publish a course? Click here

Analysis of a fully packed loop model arising in a magnetic Coulomb phase

140   0   0.0 ( 0 )
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Coulomb phase of spin ice, and indeed the Ic phase of water ice, naturally realise a fully-packed two-colour loop model in three dimensions. We present a detailed analysis of the statistics of these loops, which avoid themselves and other loops of the same colour, and contrast their behaviour to an analogous two-dimensional model. The properties of another extended degree of freedom are also addressed, flux lines of the emergent gauge field of the Coulomb phase, which appear as Dirac strings in spin ice. We mention implications of these results for related models, and experiments.



rate research

Read More

Motivated by a recent adsorption experiment [M.O. Blunt et al., Science 322, 1077 (2008)], we study tilings of the plane with three different types of rhombi. An interaction disfavors pairs of adjacent rhombi of the same type. This is shown to be a special case of a model of fully-packed loops with interactions between monomers at distance two along a loop. We solve the latter model using Coulomb gas techniques and show that its critical exponents vary continuously with the interaction strenght. At low temperature it undergoes a Kosterlitz-Thouless transition to an ordered phase, which is predicted from numerics to occur at a temperature T sim 110K in the experiments.
We study the interplay between magnetic frustration and itinerant electrons. For example, how does the coupling to mobile charges modify the properties of a spin liquid, and does the underlying frustration favor insulating or conducting states? Supported by Monte Carlo simulations, our goal is in particular to provide an analytical picture of the mechanisms involved. The models under considerations exhibit Coulomb phases in two and three dimensions, where the itinerant electrons are coupled to the localized spins via double exchange interactions. Because of the Hund coupling, magnetic loops naturally emerge from the Coulomb phase and serve as conducting channels for the mobile electrons, leading to doping-dependent rearrangements of the loop ensemble in order to minimize the electronic kinetic energy. At low electron density rho, the double exchange coupling mainly tends to segment the very long loops winding around the system into smaller ones while it gradually lifts the extensive degeneracy of the Coulomb phase with increasing rho. For higher doping, the results are strongly lattice dependent, displaying loop crystals with a given loop length for some specific values of rho, which can melt into another loop crystal by varying rho. Finally, we contrast this to the qualitatively different behavior of analogous models on kagome or triangular lattices.
108 - Pablo Serna , J.T. Chalker , 2017
We find the complete phase diagram of a generalised XY model that includes half-vortices. The model possesses superfluid, pair-superfluid and disordered phases, separated by Kosterlitz-Thouless (KT) transitions for both the half-vortices and ordinary vortices, as well as an Ising-type transition. There also occurs an unusual deconfining phase transition, where the disordered to superfluid transition is of Ising rather than KT type. We show by analytical arguments and extensive numerical simulations that there is a point in the phase diagram where the KT transition line meets the deconfining Ising phase transition. We find that the latter extends into the disordered phase not as a phase transition, but rather solely as a deconfinement transition. It is best understood in the dual height model, where on one side of the transition height steps are bound into pairs while on the other they are unbound. We also extend the phase diagram of the dual model, finding both O(2) loop model and antiferromagnetic Ising transitions.
252 - M. R. Ahmed , G. A. Gehring 2005
A study is made of an anisotropic Potts model in three dimensions where the coupling depends on both the Potts state on each site but also the direction of the bond between them using both analytical and numerical methods. The phase diagram is mapped out for all values of the exchange interactions. Six distinct phases are identified. Monte Carlo simulations have been used to obtain the order parameter and the values for the energy and entropy in the ground state and also the transition temperatures. Excellent agreement is found between the simulated and analytic results. We find one region where there are two phase transitions with the lines meeting in a triple point. The orbital ordering that occurs in $LaMnO_3$ occurs as one of the ordered phases.
Phase transitions, compensation phenomenon and magnetization of a ferro-ferrimagnetic ternary alloy AB$_{rho}$C$_{1-rho}$ composed of three different kinds of magnetic ions A, B and C with the spin magnitude 1/2, 1 and 3/2 are examined within the framework of a mixed-spin Ising model on a honeycomb lattice with a selective annealed site disorder on one of its two sublattices. It is supposed that the first sublattice of a bipartite honeycomb lattice is formed by the spin-1/2 magnetic ions, while the sites of the second sublattice are randomly occupied either by the spin-1 magnetic ions with a probability $rho$ or the spin-3/2 magnetic ions with a probability $1-rho$, both being subject to a uniaxial single-ion anisotropy. The model under investigation can be exactly mapped into an effective spin-1/2 Ising model on a triangular lattice through the generalized star-triangle transformation. For a specific concentration of the spin-1 (spin-3/2) magnetic ions, it is shown that the ferro-ferrimagnetic version of the studied model may display a compensation temperature at which the total magnetization vanishes below a critical temperature. The critical temperature strikingly may also become independent of the concentration of the randomly mixed spin-1 and spin-3/2 magnetic ions for a specific value of a uniaxial single-ion anisotropy. The spontaneous magnetic order may be notably restored at finite temperatures through the order-by-disorder mechanism above a disordered ground state, which results in an anomalous temperature dependence of the total magnetization with double reentrant phase transitions.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا