Do you want to publish a course? Click here

The Phase Diagram of an Anisotropic Potts Model

253   0   0.0 ( 0 )
 Added by Mahrous Ahmed
 Publication date 2005
  fields Physics
and research's language is English




Ask ChatGPT about the research

A study is made of an anisotropic Potts model in three dimensions where the coupling depends on both the Potts state on each site but also the direction of the bond between them using both analytical and numerical methods. The phase diagram is mapped out for all values of the exchange interactions. Six distinct phases are identified. Monte Carlo simulations have been used to obtain the order parameter and the values for the energy and entropy in the ground state and also the transition temperatures. Excellent agreement is found between the simulated and analytic results. We find one region where there are two phase transitions with the lines meeting in a triple point. The orbital ordering that occurs in $LaMnO_3$ occurs as one of the ordered phases.



rate research

Read More

We have studied by Quantum Monte Carlo simulations the low temperature phase diagram of a mixture of isotopic, hard core bosons, described by the t-Jz-Jperp model, with Jperp=a Jz. Coexistence of superfluid hole-rich and insulating, antiferromagnetically ordered hole-free phases is observed at sufficiently low hole density, for any a < 1. A two-component checkerboard supersolid phase is not observed. The experimental relevance and possible broader implications of these findings are discussed.
We study the anisotropic spin-boson model (SBM) with the subohmic bath by a numerically exact method based on variational matrix product states. A rich phase diagram is found in the anisotropy-coupling strength plane by calculating several observables. There are three distinct quantum phases: a delocalized phase with even parity (phase I), a delocalized phase with odd parity (phase II), and a localized phase with broken $Z_2$ symmetry (phase III), which intersect at a quantum tricritical point. The competition between those phases would give overall picture of the phase diagram. For small power of the spectral function of the bosonic bath, the quantum phase transition (QPT) from phase I to III with mean-field critical behavior is present, similar to the isotropic SBM. The novel phase diagram full with three different phases can be found at large power of the spectral function: For highly anisotropic case, the system experiences the QPTs from phase I to II via 1st-order, and then to the phase III via 2nd-order with the increase of the coupling strength. For low anisotropic case, the system only experiences the continuous QPT from phase I to phase III with the non-mean-field critical exponents. Very interestingly, at the moderate anisotropy, the system would display the continuous QPTs for several times but with the same critical exponents. This unusual reentrance to the same localized phase is discovered in the light-matter interacting systems. The present study on the anisotropic SBM could open an avenue to the rich quantum criticality.
The Potts model is one of the most popular spin models of statistical physics. The prevailing majority of work done so far corresponds to the lattice version of the model. However, many natural or man-made systems are much better described by the topology of a network. We consider the q-state Potts model on an uncorrelated scale-free network for which the node-degree distribution manifests a power-law decay governed by the exponent lambda. We work within the mean-field approximation, since for systems on random uncorrelated scale-free networks this method is known to often give asymptotically exact results. Depending on particular values of q and lambda one observes either a first-order or a second-order phase transition or the system is ordered at any finite temperature. In a case study, we consider the limit q=1 (percolation) and find a correspondence between the magnetic exponents and those describing percolation on a scale-free network. Interestingly, logarithmic corrections to scaling appear at lambda=4 in this case.
We analyse in depth an $S_3$-invariant nearest-neighbor quantum chain in the region of a U(1)-invariant self-dual multicritical point. We find four distinct proximate gapped phases. One has three-state Potts order, corresponding to topological order in a parafermionic formulation. Also nearby is a phase with representation symmetry-protected topological (RSPT) order. Its dual exhibits an unusual not-A order, where the spins prefer to align in two of the three directions. Within each of the four phases, we find a frustration-free point with exact ground state(s). The exact RSPT ground state is similar to that of Affleck-Kennedy-Lieb-Tasaki, whereas its dual states in the not-A phase are product states, each an equal-amplitude sum over all states where one of the three spin states on each site is absent. A field-theory analysis shows that all transitions are in the universality class of the critical three-state Potts model. They provide a lattice realization of a flow from a free-boson field theory to the Potts conformal field theory.
143 - Yi Liao , Xiao-Bo Gong , Chu Guo 2019
In this paper, we determine the geometric phase for the one-dimensional $XXZ$ Heisenberg chain with spin-$1/2$, the exchange couple $J$ and the spin anisotropy parameter $Delta$ in a longitudinal field(LF) with the reduced field strength $h$. Using the Jordan-Wigner transformation and the mean-field theory based on the Wicks theorem, a semi-analytical theory has been developed in terms of order parameters which satisfy the self-consistent equations. The values of the order parameters are numerically computed using the matrix-product-state(MPS) method. The validity of the mean-filed theory could be checked through the comparison between the self-consistent solutions and the numerical results. Finally, we draw the the topological phase diagrams in the case $J<0$ and the case $J>0$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا