Do you want to publish a course? Click here

Clustering in anomalous files of independent particles

123   0   0.0 ( 0 )
 Added by Ophir Flomenbom
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

The dynamics of classical hard particles in a quasi one-dimensional channel were studied since the 1960s and used for explaining processes in chemistry, physics and biology and in applications. Here we show that in a previously un-described file made of anomalous, independent, particles (with jumping times taken from, {psi}_{alpha} (t) t^(-1-{alpha}), 0<{alpha}<1), particles form clusters. At steady state, the percentage of particles in clusters is about, surd(1-{alpha}^3), only for anomalous {alpha}, characterizing the criticality of a phase transition. The asymptotic mean square displacement per particle in the file is about, log^2(t). We show numerically that this exciting phenomenon of a phase transition is very stable, and relate it with the mysterious phenomenon of rafts in biological membranes, and with regulation of biological channels.



rate research

Read More

138 - Ophir Flomenbom 2010
Renewal-anomalous-heterogeneous files are solved. A simple file is made of Brownian hard spheres that diffuse stochastically in an effective 1D channel. Generally, Brownian files are heterogeneous: the spheres diffusion coefficients are distributed and the initial spheres density is non-uniform. In renewal-anomalous files, the distribution of waiting times for individual jumps is exponential as in Brownian files, yet obeys: {psi}_{alpha} (t)~t^(-1-{alpha}), 0<{alpha}<1. The file is renewal as all the particles attempt to jump at the same time. It is shown that the mean square displacement (MSD) in a renewal-anomalous-heterogeneous file, <r^2>, obeys, <r^2>~[<r^2>_{nrml}]^{alpha}, where <r^2 >_{nrml} is the MSD in the corresponding Brownian file. This scaling is an outcome of an exact relation (derived here) connecting probability density functions of Brownian files and renewal-anomalous files. It is also shown that non-renewal-anomalous files are slower than the corresponding renewal ones.
Bacterial biofilms, surface-attached communities of cells, are in some respects similar to colloidal solids; both are densely packed with non-zero yield stresses. However, unlike non-living materials, bacteria reproduce and die, breaking mechanical equilibrium and inducing collective dynamic responses. We report experiments and theory investigating the motion of immotile Vibrio cholerae, which can kill each other and reproduce in biofilms. We vary viscosity by using bacterial variants that secrete different amounts of extracellular matrix polymers, but are otherwise identical. Unlike thermally-driven diffusion, in which diffusivity decreases with increased viscosity, we find that cellular motion mediated by death and reproduction is independent of viscosity over timescales relevant to bacterial reproduction. To understand this surprising result, we use two separate modeling approaches. First we perform explicitly mechanical simulations of one-dimensional chains of Voigt-Kelvin elements that can die and reproduce. Next, we perform an independent statistical approach, modeling Brownian motion with the classic Langevin equation under an effective temperature that depends on cellular division rate. The diffusion of cells in both approaches agrees quite well, supporting a kinetic interpretation for the effective temperature used here and developed in previous work. As the viscoelastic behavior of biofilms is believed to play a large role in their anomalous biological properties, such as antibiotic resistance, the independence of cellular diffusive motion --- important for biofilm growth and remodeling --- on viscoelastic properties likely holds ecological, medical, and industrial relevance.
249 - S. Nowak , T. Chou 2010
When a ligand that is bound to an integral membrane receptor is pulled, the membrane and the underlying cytoskeleton can deform before either the membrane delaminates from the cytoskeleton or the ligand detaches from the receptor. If the membrane delaminates from the cytoskeleton, it may be further extruded and form a membrane tether. We develop a phenomenological model for this processes by assuming that deformations obey Hookes law up to a critical force at which the cell membrane locally detaches from the cytoskeleton and a membrane tether forms. We compute the probability of tether formation and show that they can be extruded only within an intermediate range of force loading rates and pulling velocities. The mean tether length that arises at the moment of ligand detachment is computed as are the force loading rates and pulling velocities that yield the longest tethers.
We study the effect of permeabilizing electric fields applied to two different types of giant unilamellar vesicles, the first formed from EggPC lipids and the second formed from DOPC lipids. Experiments on vesicles of both lipid types show a decrease in vesicle radius which is interpreted as being due to lipid loss during the permeabilization process. We show that the decrease in size can be qualitatively explained as a loss of lipid area which is proportional to the area of the vesicle which is permeabilized. Three possible mechanisms responsible for lipid loss were directly observed: pore formation, vesicle formation and tubule formation.
Vivid structural colors in birds are a conspicuous and vital part of their phenotype. They are produced by a rich diversity of integumentary photonic nanostructures in skin and feathers. Unlike pigmentary coloration, whose molecular genetic basis is being elucidated, little is known regarding the pathways underpinning organismal structural coloration. Here, we review available data on the development of avian structural colors. In particular, feather photonic nanostructures are understood to be intracellularly self-assembled by physicochemical forces typically seen in soft colloidal systems. We identify promising avenues for future research that can address current knowledge gaps, which is also highly relevant for the sustainable engineering of advanced bioinspired and biomimetic materials.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا