Do you want to publish a course? Click here

Theory and experiment testing flux-line-cutting physics

103   0   0.0 ( 0 )
 Added by John R. Clem
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

We discuss predictions of five proposed theories for the critical state of type-II superconductors accounting for both flux cutting and flux transport (depinning). The theories predict different behaviours for the ratio $E_y/E_z$ of the transverse and parallel components of the in-plane electric field produced just above the critical current of a type-II superconducting slab as a function of the angle of an in-plane applied magnetic field. We present experimental results measured using an epitaxially grown YBCO thin film favoring one of the five theories: the extended elliptic critical-state model. We conclude that when the current density $bm J$ is neither parallel nor perpendicular to the local magnetic flux density $bm B$, both flux cutting and flux transport occur simultaneously when $J$ exceeds the critical current density $J_c$, indicating an intimate relationship between flux cutting and depinning. We also conclude that the dynamical properties of the superconductor when $J$ exceeds $J_c$ depend in detail upon two nonlinear effective resistivities for flux cutting ($rho_c$) and flux flow ($rho_f$) and their ratio $r= rho_c/rho_f$.



rate research

Read More

108 - John R. Clem 2011
I introduce a critical-state theory incorporating both flux cutting and flux transport to calculate the magnetic-field and current-density distributions inside a type-II superconducting cylinder at its critical current in a longitudinal applied magnetic field. The theory is an extension of the elliptic critical-state model introduced by Romero-Salazar and Perez-Rodriguez. The vortex dynamics depend in detail upon two nonlinear effective resistivities for flux cutting (rho_parallel) and flux flow (rho_perp), and their ratio r = rho_parallel/rho_perp. When r < 1, the low relative efficiency of flux cutting in reducing the magnitude of the internal magnetic-flux density leads to a paramagnetic longitudinal magnetic moment. As a model for understanding the experimentally observed interrelationship between the critical currents for flux cutting and depinning, I calculate the forces on a helical vortex arc stretched between two pinning centers when the vortex is subjected to a current density of arbitrary angle phi. Simultaneous initiation of flux cutting and flux transport occurs at the critical current density J_c(phi) that makes the vortex arc unstable.
Galvanic coupling of small-area (three-junction) flux qubits, using shared large Josephson junctions, has been shown to yield appreciable interaction strengths in a flexible design, which does not compromise the junctions intrinsic good coherence properties. For an introduction, I recapitulate an elementary derivation of the coupling strength, which is subsequently generalized to the case of tunable coupling for a current-biased shared junction. While the ability to vary coupling constants by, say, 20% would be useful in experiments, sign-tunability (implying switchability) is highly preferable for several quantum-computing paradigms. This note sketches two ideas: a crossbar design with competing ferro- and antiferromagnetic current-biased tunable couplings, and a mediated one involving an extra loop between the qubits. The latter is a variation on proposals for tunable capacitive coupling of charge qubits, and tunable inductive coupling of large-area flux qubits.
We consider the effect of weak uncorrelated quenched disorder (point defects) on a strongly fluctuating flux-line liquid. We use a hydrodynamic model which is based on mapping the flux-line system onto a quantum liquid of relativistic charged bosons in 2+1 dimensions [P. Benetatos and M. C. Marchetti, Phys. Rev. B 64, 054518, (2001)]. In this model, flux lines are allowed to be arbitrarily curved and can even form closed loops. Point defects can be scalar or polar. In the latter case, the direction of their dipole moments can be random or correlated. Within the Gaussian approximation of our hydrodynamic model, we calculate disorder-induced corrections to the correlation functions of the flux-line fields and the elastic moduli of the flux-line liquid. We find that scalar disorder enhances loop nucleation, and polar (magnetic) defects decrease the tilt modulus.
An experiment aimed at testing special relativity via a comparison of the velocity of a non matter particle (annihilation photon) with the velocity of the matter particle (Compton electron) produced by the second annihilation photon from the decay Na-22(beta^+)Ne-22 is proposed.
We present theory of dc Josephson effect in contacts between Fe-based and spin-singlet $s$-wave superconductors. The method is based on the calculation of temperature Greens function in the junction within the tight-binding model. We calculate the phase dependencies of the Josephson current for different orientations of the junction relative to the crystallographic axes of Fe-based superconductor. Further, we consider the dependence of the Josephson current on the thickness of an insulating layer and on temperature. Experimental data for PbIn/Ba$_{1-x}$K$_{x}$(FeAs)$_2$ point-contact Josephson junctions are consistent with theoretical predictions for $s_{pm}$ symmetry of an order parameter in this material. The proposed method can be further applied to calculations of the dc Josephson current in contacts with other new unconventional multiorbital superconductors, such as $Sr_2RuO_4$ and superconducting topological insulator $Cu_xBi_2Se_3$.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا