No Arabic abstract
The magnetic ordering of superconducting single crystals of K_0.85Fe_1.83Se_2.09 has been studied between 10K and 550K using 57-Fe Mossbauer spectroscopy. Despite being superconducting below T_sc ~30K, the iron sublattice in K_0.85Fe_1.83Se_2.09 clearly exhibits magnetic order from well below T_sc to its Neel temperature of T_N = 532 +/- 2K. The iron moments are ordered perpendicular to the single crystal plates, i.e. parallel to the crystal c-axis. The order collapses rapidly above 500K and the accompanying growth of a paramagnetic component suggests that the magnetic transition may be first order, which may explain the unusual temperature dependence reported in recent neutron diffraction studies.
We have performed detailed $^{57}$Fe Mossbauer spectroscopy measurements on Ba$_{0.78}$K$_{0.22}$Fe$_2$As$_2$ and BaFe$_{2-x}$Ni$_x$As$_2$ single crystal mosaics showing antiferromagnetic ordering below $T_N$ with superconductivity below $T_C$. Analysis of the Mossbauer spectra shows a decrease in the magnetic hyperfine (hf) field but no change in the magnetic volume fraction below $T_C$. This clearly indicates the coexistence of magnetism and superconductivity in these compounds. The decrease in the magnetic hf field below $T_C$ depends on the difference between $T_N$ and $T_C$, being the largest for $T_N$ close to $T_C$. Two different explanations for this observation are given. We also find that the non-magnetic volume fraction below $T_N$ correlates with the Ni doping $x$, being large for high $T_C$ and small for high $T_N$.
We present our results of a local probe study on EuFe$_{2}$(As$_{1-x}$P$_{x}$)$_{2}$ single crystals with $x$=0.13, 0.19 and 0.28 by means of muon spin rotation and ${}^{57}$Fe Mossbauer spectroscopy. We focus our discussion on the sample with $x$=0.19 viz. at the optimal substitution level, where bulk superconductivity ($T_{text{SC}}=28$ K) sets in above static europium order ($T^{text{Eu}}=20$K) but well below the onset of the iron antiferromagnetic (AFM) transition ($sim$100 K). We find enhanced spin dynamics in the Fe sublattice closely above $T_{text{SC}}$ and propose that these are related to enhanced Eu fluctuations due to the evident coupling of both sublattices observed in our experiments.
Temperature dependent $^{57}$Fe Mossbauer spectroscopy and specific heat measurements for CaK(Fe$_{1-x}$Ni$_x$)$_4$As$_4$ with $x$ = 0, 0.017, 0.033, and 0.049 are presented. No magnetic hyperfine field (e.g. no static magnetic order) down to 5.5 K was detected for $x$ = 0 and 0.017 in agreement with the absence of any additional feature below superconducting transition temperature, $T_c$, in the specific heat data. The evolution of magnetic hyperfine field with temperature was studied for $x$ = 0.033 and 0.049. The long-range magnetic order in these two compounds coexists with superconductivity. The magnetic hyperfine field, $B_{hf}$, (ordered magnetic moment) below $T_c$ in CaK(Fe$_{0.967}$Ni$_{0.033}$)$_4$As$_4$ is continuously suppressed with the developing superconducting order parameter. The $B_{hf}(T)$ data for CaK(Fe$_{0.967}$Ni$_{0.033}$)$_4$As$_4$, and CaK(Fe$_{0.951}$Ni$_{0.049}$)$_4$As$_4$ can be described reasonably well by Machidas model for coexistence of itinerant spin density wave magnetism and superconductivity [K. Machida, J. Phys. Soc. Jpn. {bf 50}, 2195 (1981)]. We demonstrate directly that superconductivity suppresses the spin density wave order parameter if the conditions are right, in agreement with the theoretical analysis.
Bulk and surface properties of high-quality single crystals of zirconium dodecaboride have been studied in the temperature range from 4.5 K up to the superconducting transition temperature which is found to be nearly 6.06 K. Scanning tunnelling spectroscopy data, together with dc and ac magnetization measurements, are consistent with the conventional s-wave pairing scenario, whereas they disagree in estimates of the electron-phonon coupling strength. We explain the divergence, supposing a great difference between the surface and bulk superconducting characteristics of the compound. This assertion is supported by our findings of a non-linear magnetic response to an amplitude-modulated alternating magnetic field, testifying to the presence of surface superconductivity in the ZrB$_{12}$ samples at dc fields exceeding the thermodynamic critical field.
CsCa$_2$Fe$_4$As$_4$F$_2$ is a newly discovered iron-based superconductor with $T_mathrm{c}sim$ 30 K containing double Fe$_2$As$_2$ layers that are separated by insulating Ca$_2$F$_2$ spacer layers. Here we report the transport and magnetization measurements on CsCa$_2$Fe$_4$As$_4$F$_2$ single crystals grown for the first time using the self flux of CsAs. We observed a huge resistivity anisotropy $rho_c(T)/rho_{ab}(T)$, which increases with decreasing temperature, from 750 at 300 K to 3150 at 32 K. The $rho_c(T)$ data exhibit a non-metallic behavior above $sim$140 K, suggesting an incoherent electronic state at high temperatures due to the dimension crossover. The superconducting onset transition temperature in $rho_{ab}$ is 0.7 K higher than that in $rho_c$, suggesting two-dimensional (2D) superconducting fluctuations. The lower and upper critical fields also show an exceptional anisotropy among iron-based superconductors. The $H_{c1}^bot(T)$ data are well fitted using the model with two $s$-wave-like superconducting gaps, $Delta_1(0)=6.75$ meV and $Delta_2(0)=2.32$ meV. The inter-plane coherence length $xi_c(0)$ is $3.6$ AA, remarkably smaller than the distance between conducting layers (8.6 AA), consolidating the 2D nature in the title material.