No Arabic abstract
The phenomenon of ferromagnetic resonance (FMR) provides fundamental information on the physics of magnetic materials and lies at the heart of a variety of signal processing microwave devices. Here we demonstrate theoretically that substrate-induced lattice strains may change the FMR frequency of an epitaxial ferromagnetic film dramatically, leading to ultralow and ultrahigh resonance frequencies at room temperature. Remarkably, the FMR frequency varies with the epitaxial strain nonmonotonically, reaching minimum at a critical strain corresponding to the strain-induced spin reorientation transition. Furthermore, by coupling the ferromagnetic film to a ferroelectric substrate, it becomes possible to achieve an efficient voltage control of FMR parameters. In contrast to previous studies, we found that the tunability of FMR frequency varies with the applied electric field and strongly increases at critical field intensity. The revealed features open up wide opportunities for the development of advanced tunable magnetoelectric devices based on strained nanomagnets.
This paper has been withdrawn by the author
Magnetodynamics in epitaxial Fe1-xCox films on GaAs (100) are studied using time-resolved ferromagnetic resonance, in which the free precession of the magnetization after an impulsive excitation is measured using the polar Kerr effect. The sample is rotated with respect to the static and pulsed field directions, providing a complete mapping of the free energy surface and characteristic relaxation times. The magnetic response can be simulated with a simple coherent rotation model except in the immediate vicinity of switching fields. Bulk and surface anisotropies are identified, and unusual dynamics associated with the coexistence of cubic and uniaxial anisotropies are observed.
Since oxide materials like Sr$_2$FeMoO$_6$ are usually applied as thin films, we studied the effect of biaxial strain, resulting from the substrate, on the electronic and magnetic properties and, in particular, on the formation energy of point defects. From our first-principles calculations, we determined that the probability of forming point defects - like vacancies or substitutions - in Sr$_2$FeMoO$_6$ could be adjusted by choosing a proper substrate. For example, the amount of anti-site disorder can be reduced with compressive strain in order to obtain purer Sr$_2$FeMoO$_6$ as needed for spintronic applications, while the formation of oxygen vacancies is more likely for tensile strain, which improves the functionality of Sr$_2$FeMoO$_6$ as a basis material of solid oxide fuel cells. In addition, we were also be able to include the oxygen partial pressure in our study by using its thermodynamic connection with the chemical potential. Strontium vacancies become for example more likely than oxygen vacancies at a pressure of 1$,$bar. Hence, this degree of freedom might offer in general another potential method for defect engineering in oxides besides, e.g., experimental growth conditions like temperature or gas pressure.
Using the Landau-Ginzburg-Devonshire theory, an influence of the misfit strain and surface screening charges, as well as the role of the flexoelectric effect, have been studied by numerical modelling in the case of a rhombohedral lead zirconate-titanate ferroelectric/ferroelastic thin film with an anisotropic misfit produced by a substrate. It was established that the magnitude and sign of the misfit strain influence the domain structure and predominant directions of the polarization vector, providing misfit-dependent phases with different favourable polarization components. Whilst strong enough compressive misfit strains favour a phase with an orthorhombic-like polarization directions, strong tensile misfits only yield in-plane polarization components. The strength of surface screening is seen to condition the existence of closure domain structures and, by increasing, supports the single-domain state depending on the value of the misfit strain. The flexoelectric effect exhibits a weak influence on the phase diagram of multi-domain states when compared with the phase diagram of single-domain states. Its effect, however, becomes significant in the case of skyrmion topological states, which spontaneously form near the film surface when compressive misfit strains are applied. Cooperative influence of the misfit strain, surface screening charges and temperature can set a thin rhombohedral ferroelectric film into a number of different polar and structural states, whereby the role of the flexoelectric effect is pronounced for topologically nontrivial structures.
We demonstrate reproducible voltage induced non-volatile switching of the magnetization in an epitaxial thin Fe81Ga19 film. Switching is induced at room temperature and without the aid of an external magnetic field. This is achieved by the modification of the magnetic anisotropy by mechanical strain induced by a piezoelectric transducer attached to the layer. Epitaxial Fe81Ga19 is shown to possess the favourable combination of cubic magnetic anisotropy and large magnetostriction necessary to achieve this functionality with experimentally accessible levels of strain. The switching of the magnetization proceeds by the motion of magnetic domain walls, also controlled by the voltage induced strain.