No Arabic abstract
Dirac-Weyl fermions are massless relativistic particles with a well-defined helicity which arise in the context of high-energy physics. Here we propose a quantum simulation of these paradigmatic fermions using multicomponent ultracold atoms in a two-dimensional square optical lattice. We find that laser-assisted spin-dependent hopping, specifically tuned to the $(2s+1)$-dimensional representations of the $mathfrak{su}$(2) Lie algebra, directly leads to a regime where the emerging massless excitations correspond to Dirac-Weyl fermions with arbitrary pseudospin $s$. We show that this platform hosts two different phases: a semimetallic phase that occurs for half-integer $s$, and a metallic phase that contains a flat zero-energy band at integer $s$. These phases host a variety of interesting effects, such as a very rich anomalous quantum Hall effect and a remarkable multirefringent Klein tunneling. In addition we show that these effects are directly related to the number of underlying Dirac-Weyl species and zero modes.
We propose a two-dimensional (2D) version of Thouless pumping that can be realized by using ultracold atoms in optical lattices. To be specific, we consider a 2D square lattice tight-binding model with an obliquely introduced superlattice. It is demonstrated that quantized particle transport occurs in this system, and that the transport is expressed as a solution of a Diophantine equation. This topological nature can be understood by mapping the Hamiltonian to a three-dimensional (3D) cubic lattice model with a homogeneous magnetic field. We also propose a continuum model with obliquely introduced superlattice and obtain the amount of pumping by calculating the Berry curvature. For this model, the same Diophantine equation can be derived from the plane-wave approximation. Furthermore, we investigate the effect of a harmonic trap by solving the time-dependent Schrodinger equation. Under a harmonic trap potential, as often used in cold atom experiments, we show, by numerical simulations, that nearly quantized pumping occurs when the phase of the superlattice potential is driven at a moderate speed. Also, we find that two regions appear, the Hofstadter region and the rectifying region, depending on the modulation amplitude of the superlattice potential. In the rectifying region with larger modulation amplitudes, we uncover that the pumping direction is restricted to exactly the $x$-axis or the $y$-axis direction. This difference in these two regions causes a crossover behavior, characterizing the effect of the harmonic trap.
We present an accurate ab initio tight-binding model, capable of describing the dynamics of Dirac points in tunable honeycomb optical lattices following a recent experimental realization [L. Tarruell et al., Nature 483, 302 (2012)]. Our scheme is based on first-principle maximally localized Wannier functions for composite bands. The tunneling coefficients are calculated for different lattice configurations, and the spectrum properties are well reproduced with high accuracy. In particular, we show which tight binding description is needed in order to accurately reproduce the position of Dirac points and the dispersion law close to their merging, for different laser intensities.
We report on the experimental implementation of a spin pump with ultracold bosonic atoms in an optical superlattice. In the limit of isolated double wells it represents a 1D dynamical version of the quantum spin Hall effect. Starting from an antiferromagnetically ordered spin chain, we periodically vary the underlying spin-dependent Hamiltonian and observe a spin current without charge transport. We demonstrate a novel detection method to measure spin currents in optical lattices via superexchange oscillations emerging after a projection onto static double wells. Furthermore, we directly verify spin transport through in-situ measurements of the spins center of mass displacement.
In this work we present an optical lattice setup to realize a full Dirac Hamiltonian in 2+1 dimensions. We show how all possible external potentials coupled to the Dirac field can arise from perturbations of the existing couplings of the honeycomb lattice model, without the need of additional laser fields. This greatly simplifies the proposed implementations, requiring only spatial modulations of the intensity of the laser beams. We finally suggest several experiments to observe the properties of the Dirac field in the setup.
We study the dynamical behaviour of ultracold fermionic atoms loaded into an optical lattice under the presence of an effective magnetic flux, induced by spin-orbit coupled laser driving. At half filling, the resulting system can emulate a variety of iconic spin-1/2 models such as an Ising model, an XY model, a generic XXZ model with arbitrary anisotropy, or a collective one-axis twisting model. The validity of these different spin models is examined across the parameter space of flux and driving strength. In addition, there is a parameter regime where the system exhibits chiral, persistent features in the long-time dynamics. We explore these properties and discuss the role played by the systems symmetries. We also discuss experimentally-viable implementations.