No Arabic abstract
We study the decoherence of a renormalised quantum field theoretical system. We consider our novel correlator approach to decoherence where entropy is generated by neglecting observationally inaccessible correlators. Using out-of-equilibrium field theory techniques at finite temperatures, we show that the Gaussian von Neumann entropy for a pure quantum state asymptotes to the interacting thermal entropy. The decoherence rate can be well described by the single particle decay rate in our model. Connecting to electroweak baryogenesis scenarios, we moreover study the effects on the entropy of a changing mass of the system field. Finally, we compare our correlator approach to existing approaches to decoherence in the simple quantum mechanical analogue of our field theoretical model. The entropy following from the perturbative master equation suffers from physically unacceptable secular growth.
It is well known that loss of information about a system, for some observer, leads to an increase in entropy as perceived by this observer. We use this to propose an alternative approach to decoherence in quantum field theory in which the machinery of renormalisation can systematically be implemented: neglecting observationally inaccessible correlators will give rise to an increase in entropy of the system. As an example we calculate the entropy of a general Gaussian state and, assuming the observers ability to probe this information experimentally, we also calculate the correction to the Gaussian entropy for two specific non-Gaussian states.
We study a free scalar field $phi$ in a fixed curved background spacetime subject to a higher derivative field equation of the form $F(Box)phi =0$, where $F$ is a polynomial of the form $F(Box)= prod_i (Box-m_i^2)$ and all masses $m_i$ are distinct and real. Using an auxiliary field method to simplify the calculations, we obtain expressions for the Belinfante-Rosenfeld symmetric energy-momentum tensor and compare it with the canonical energy-momentum tensor when the background is Minkowski spacetime. We also obtain the conserved symplectic current necessary for quantisation and briefly discuss the issue of negative energy versus negative norm and its relation to Reflection Positivity in Euclidean treatments. We study, without assuming spherical symmetry, the possible existence of finite energy static solutions of the scalar equations, in static or stationary background geometries. Subject to various assumptions on the potential, we establish non-existence results including a no-scalar-hair theorem for static black holes. We consider Pais-Uhlenbeck field theories in a cosmological de Sitter background, and show how the Hubble friction may eliminate what would otherwise be unstable behaviour when interactions are included.
We extend the effective field theory (EFT) formalism for gravitational radiation from a binary system of compact objects to the case of extended objects. In particular, we study the EFT for a binary system consisting of two infinitely-long cosmic strings with small velocity and small spatial substructure, or wiggles. The complexity of the system requires the introduction of two perturbative expansion parameters, constructed from the velocity and size of the wiggles, in contrast with the point particle case, for which a single parameter is sufficient. This further requires us to assign new power counting rules in the system. We integrate out the modes corresponding to potential gravitons, yielding an effective action for the radiation gravitons. We show that this action describes a changing quadrupole, sourced by the bending modes of the string, which in turn generates gravitational waves. We study the ultraviolet divergences in this description, and use them to obtain the classical renormalization group flow of the string tension in such a setting.
A general covariant local field theory of the holographic dark energy model is presented. It turns out the low energy effective theory of the holographic dark energy is the massive gravity theory whose graviton has 3 polarisations, including one scalar mode and two tensor modes. The Compton wavelength is the size of the future event horizon of the universe. The UV-IR correspondence in the holographic dark energy model stems from the scalar gravitons strong coupling at the energy scale that marks the breaking down of the effective field theory.
In-In perturbation theory is a vital tool for cosmology and nonequilibrium physics. Here, we reconcile an apparent conflict between two of its important aspects with particular relevance to De Sitter/inflationary contexts: (i) the need to slightly deform unitary time evolution with an i*epsilon prescription that projects the free (Bunch-Davies) vacuum onto the interacting vacuum and renders vertex integrals well-defined, and (ii) Weinbergs nested commutator reformulation of in-in perturbation theory which makes manifest the constraints of causality within expectation values of local operators, assuming exact unitarity. We show that a modified i*epsilon prescription maintains the exact unitarity on which the derivation of (ii) rests, while nontrivially agreeing with (i) to all orders of perturbation theory.