Do you want to publish a course? Click here

Dimuon radiation at the CERN SPS within a (3+1)d hydrodynamic+cascade model

201   0   0.0 ( 0 )
 Added by Elvira Santini
 Publication date 2011
  fields
and research's language is English




Ask ChatGPT about the research

We analyze dilepton emission from hot and dense matter using a hybrid approach based on the Ultrarelativistic Quantum Molecular Dynamics (UrQMD) transport model with an intermediate hydrodynamic stage for the description of heavy-ion collisions at relativistic energies. During the hydrodynamic stage, the production of lepton pairs is described by radiation rates for a strongly interacting medium in thermal equilibrium. In the low mass region, hadronic thermal emission is evaluated assuming vector meson dominance including in-medium modifications of the rho meson spectral function through scattering from nucleons and pions in the heat bath. In the intermediate mass region, the hadronic rate is essentially determined by multi-pion annihilation processes. Emission from quark-antiquark annihilation in the quark gluon plasma is taken into account as well. When the system is sufficiently dilute, the hydrodynamic description breaks down and a transition to a final cascade stage is performed. In this stage dimuon emission is evaluated as commonly done in transport models. Focusing on the enhancement with respect to the contribution from long-lived hadron decays after freezout observed at the SPS in the low mass region of the dilepton spectra, the relative importance of the different thermal contributions and of the two dynamical stages is investigated. We find that three separated regions can be identified in the invariant mass spectra. Whereas the very low and the intermediate mass regions mostly receive contribution from the thermal dilepton emission, the region around the vector meson peak is dominated by the cascade emission. Above the rho-peak region the spectrum is driven by QGP radiation. Analysis of the dimuon transverse mass spectra reveals that the thermal hadronic emission shows an evident mass ordering not present in the emission from the QGP.



rate research

Read More

NA60 is a fixed-target experiment at the CERN SPS which measured dimuon production in nucleus-nucleus and proton-nucleus collisions. In this paper we report on a precision measurement of low-mass muon pairs in 158 AGeV indium-indium collisions. A significant excess of pairs is observed above the yield expected from neutral meson decays. The excess can be isolated by subtraction of expected sources, thanks to the excellent mass resolution and large sample size.
88 - R. Rapp , E. Shuryak 1999
We investigate the significance of thermal dilepton radiation in the intermediate-mass region in heavy-ion reactions at CERN-SpS energies. Within a thermal fireball model for the space-time evolution, the radiation from hot matter is found to dominate over hard background processes (Drell-Yan and open charm) up to invariant masses of about 2 GeV, with a rather moderate fraction emerging from early stages with temperatures $Tsimeq 175-200$ MeV associated with deconfined matter. Further including a schematic acceptance for the NA50 experiment we find good agreement with the observed enhancement in the region 1.5 GeV~$<M_{mumu}<$~3 GeV. In particular, there is no need to invoke any anomalous open charm enhancement.
We present a few estimates of energy densities reached in heavy-ion collisions at the CERN SPS. The estimates are based on data and models of proton-nucleus and nucleus-nucleus interactions. In all of these estimates the maximum energy density in central Pb+Pb interactions is larger than the critical energy density of about 0.7 GeV/fm^3 following from lattice gauge theory computations. In estimates which we consider as realistic the maximum energy density is about twice the critical value. In this way our analysis gives some support to claims that deconfined matter has been produced at the CERN SPS. Any definite statement requires a deeper understanding of formation times of partons and hadrons in nuclear collisions. We also compare our results with implicit energy estimates contained in earlier models of anomalous J/psi suppression in nuclear collisions.
A new heavy-ion experiment on fixed target, NA60+, has been proposed at the CERN SPS for data taking in the next years. Its main goals will be focused on precision studies of thermal dimuons, heavy quark and strangeness production in Pb-Pb collisions at center-of-mass energies ranging from 5 to 17 GeV, which will provide a unique opportunity to investigate the region of the QCD phase diagram at high baryochemical potential ($mu_B sim 200-400$~MeV). The key points of the NA60+ very broad and ambitious physics program will be described.
116 - Detlef Zschiesche 2005
We study the role of temperature and density inhomogeneities on the freeze-out of relativistic heavy ion collisions at CERN SPS. Especially the impact on the particle abundancies is investigated. The quality of the fits to the measured particle ratios in 158 AGeV Pb+Pb collisions significantly improves as compared to a homogeneous model.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا