Do you want to publish a course? Click here

Coherent properties of nano-electromechanical systems

489   0   0.0 ( 0 )
 Added by Giulia Piovano
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the properties of a nano-electromechanical system in the coherent regime, where the electronic and vibrational time scales are of the same order. Employing a master equation approach, we obtain the stationary reduced density matrix retaining the coherences between vibrational states. Depending on the system parameters, two regimes are identified, characterized by either ($i$) an {em effective} thermal state with a temperature {em lower} than that of the environment or ($ii$) strong coherent effects. A marked cooling of the vibrational degree of freedom is observed with a suppression of the vibron Fano factor down to sub-Poissonian values and a reduction of the position and momentum quadratures.



rate research

Read More

We discuss methods for numerically solving the generalized Master equation GME which governs the time-evolution of the reduced density matrix of a mechanically movable mesoscopic device in a dissipative environment. As a specific example, we consider the quantum shuttle -- a generic quantum nanoelectromechanical system (NEMS). When expressed in the oscillator basis, the static limit of the GME becomes a large linear non-sparse matrix problem (characteristic size larger than 10^4 by 10^4) which however, as we show, can be treated using the Arnoldi iteration scheme. The numerical results are interpreted with the help of Wigner functions, and we compute the current and the noise in a few representative cases.
We investigate the mechanical properties of a doubly-clamped, double-layer nanobeam embedded into an electromechanical system. The nanobeam consists of a highly pre-stressed silicon nitride and a superconducting niobium layer. By measuring the mechanical displacement spectral density both in the linear and the nonlinear Duffing regime, we determine the pre-stress and the effective Youngs modulus of the nanobeam. An analytical double-layer model quantitatively corroborates the measured values. This suggests that this model can be used to design mechanical multilayer systems for electro- and optomechanical devices, including materials controllable by external parameters such as piezoelectric, magnetrostrictive, or in more general multiferroic materials.
We have determined the magnetic properties of epitaxially grown Dy islands on graphene/SiC(0001) that are passivated by a gold film (deposited in the ultra-high vacuum growth chamber) for {it ex-situ} X-ray magnetic circular dichroism (XMCD). Our sum-rule analysis of the Dy $M_{4,5}$ XMCD spectra at low temperatures ($T=15$ K) as a function of magnetic field assuming Dy$^{3+}$ (spin configuration $^6H_{15/2}$) indicate that the projection of the magnetic moment along an applied magnetic field of 5 T is 3.5(3) $mu_B$. Temperature dependence of the magnetic moment (extracted from the $M_5$ XMCD spectra) shows an onset of a change in magnetic moment at about 175 K in proximity of the transition from paramagnetic to helical magnetic structure at $T_{rm H} =179$ K in bulk Dy. No feature at the vicinity of the ferromagnetic transition of hcp bulk Dy at $T_{rm c}$ = 88 K is observed. However, below $sim$130 K, the inverse magnetic moment (extracted from the XMCD) is linear in temperature as commonly expected from a paramagnetic system suggesting different behavior of Dy nano-island than bulk Dy.
248 - Emil Varga , John P. Davis 2021
Superfluid $^4$He is a promising material for optomechanical and electromechanical applications due to its low acoustic loss. Some of the more intriguing aspects of superfluidity -- the macroscopic coherence, topological nature of vorticity, and capability of supporting non-classical flows -- remain, however, poorly explored resources in opto- and electro-mechanical systems. Here, we present an electromechanical coupling to pure superflow inside a nanofluidic Helmholtz resonator with viscously clamped normal fluid. The system is capable of simultaneous measurement of displacement and velocity of the Helmholtz mechanical mode weakly driven by incoherent environmental noise. Additionally, we implement feedback capable of inducing self-oscillation of the non-classical acoustic mode, damping the motion below the ambient level, and tuning of the mode frequency.
The thermoelectric properties in one- and two-dimensional silicon and germanium structures have been investigated using first-principle density functional techniques and linear response for the thermal and electrical transport. We have considered here the two-dimensional silicene and germanene, together with nano-ribbons of different widths. For the nano-ribbons, we have also investigated the possibility of nano-structuring these systems by mixing silicon and germanium. We found that the figure of merit at room temperature of these systems is remarkably high, up to 2.5.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا