No Arabic abstract
The ability to generate complete, or almost complete, chaotic mixing is of great interest in numerous applications, particularly for microfluidics. For this purpose, we propose a strategy that allows us to quickly target the parameter values at which complete mixing occurs. The technique is applied to a time periodic, two-dimensional electro-osmotic flow with spatially and temporally varying Helmoltz-Smoluchowski slip boundary conditions. The strategy consists of following the linear stability of some key periodic pathlines in parameter space (i.e., amplitude and frequency of the forcing), particularly through the bifurcation points at which such pathlines become unstable.
Electroosmotic pumping of fluid through a nanopore that traverses an insulating membrane is considered. The density of surface charge on the membrane is assumed uniform, and sufficiently low for the Poisson-Boltzmann equation to be linearized. The reciprocal theorem gives the flow rate generated by an applied weak electric field, expressed as an integral over the fluid volume. For a circular hole in a membrane of zero thickness, an analytical result is possible up to quadrature. For a membrane of arbitrary thickness, the full Poisson--Nernst--Planck--Stokes system of equations is solved numerically using a finite volume method. The numerical solution agrees with the standard analytical result for electro-osmotic flux through a long cylindrical pore when the membrane thickness is large compared to the hole diameter. When the membrane thickness is small, the flow rate agrees with that calculated using the reciprocal theorem.
We characterize the electro-phoretic motion of charged sphere suspensions in the presence of substantial electro-osmotic flow using a recently introduced small angle super-heterodyne dynamic light scattering instrument (ISASH-LDV). Operation in integral mode gives access to the particle velocity distribution over the complete cell cross-section. Obtained Doppler spectra are evaluated for electro-phoretic mobility, wall electro-osmotic mobility and particle diffusion coefficient. Simultaneous measurements of differing electro-osmotic mobilities leading to asymmetric solvent flow are demonstrated in a custom made electro-kinetic cell fitting standard microscopy slides as exchangeable sidewalls. Scope and range of our approach are discussed demonstrating the possibility of an internal calibration standard and using the simultaneously measured electro-kinetic mobilities in the interpretation of microfluidic pumping experiment involving an inhomogeneous electric field and a complex solvent flow pattern.
A stirring device consisting of a periodic motion of rods induces a mapping of the fluid domain to itself, which can be regarded as a homeomorphism of a punctured surface. Having the rods undergo a topologically-complex motion guarantees at least a minimum amount of stretching of material lines, which is important for chaotic mixing. We use topological considerations to describe the nature of the injection of unmixed material into a central mixing region, which takes place at injection cusps. A topological index formula allow us to predict the possible types of unstable foliations that can arise for a fixed number of rods.
Unrestricted particle transport through microfluidic channels is of paramount importance to a wide range of applications, including lab-on-a-chip devices. In this article, we study using video microscopy the electro-osmotic aggregation of colloidal particles at the opening of a micrometer-sized silica channel in presence of a salt gradient. Particle aggregation eventually leads to clogging of the channel, which may be undone by a time-adjusted reversal of the applied electric potential. We numerically model our system via the Stokes-Poisson-Nernst-Planck equations in a geometry that approximates the real sample. This allows us to identify the transport processes induced by the electric field and salt gradient and to provide evidence that a balance thereof leads to aggregation. We further demonstrate experimentally that a net flow of colloids through the channel may be achieved by applying a square-waveform electric potential with an appropriately tuned duty cycle. Our results serve to guide the design of microfluidic and nanofluidic pumps that allow for controlled particle transport and provide new insights for anti-fouling in ultra-filtration.
We explore the behaviour of chaotic oscillators in hierarchical networks coupled to an external chaotic system whose intrinsic dynamics is dissimilar to the other oscillators in the network. Specifically, each oscillator couples to the mean-field of the oscillators below it in the hierarchy, and couples diffusively to the oscillator above it in the hierarchy. We find that coupling to one dissimilar external system manages to suppress the chaotic dynamics of all the oscillators in the network at sufficiently high coupling strength. This holds true irrespective of whether the connection to the external system is direct or indirect through oscillators at another level in the hierarchy. Investigating the synchronization properties show that the oscillators have the same steady state at a particular level of hierarchy, whereas the steady state varies across different hierarchical levels. We quantify the efficacy of control by estimating the fraction of random initial states that go to fixed points, a measure analogous to basin stability. These quantitative results indicate the easy controllability of hierarchical networks of chaotic oscillators by an external chaotic system, thereby suggesting a potent method that may help design control strategies.