Do you want to publish a course? Click here

Cohomology of a flag variety as a Bethe algebra

422   0   0.0 ( 0 )
 Added by Svetlana Varchenko
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

We interpret the GL_n equivariant cohomology of a partial flag variety of flags of length N in C^n as the Bethe algebra of a suitable gl_N[t] module associated with the tensor power (C^N)^{otimes n}.



rate research

Read More

For the root system of type $A$ we introduce and study a certain extension of the quadratic algebra invented by S. Fomin and the first author, to construct a model for the equivariant cohomology ring of the corresponding flag variety. As an application of our construction we describe a generalization of the equivariant Pieri rule for double Schubert polynomials. For a general finite Coxeter system we construct an extension of the corresponding Nichols-Woronowicz algebra. In the case of finite crystallographic Coxeter systems we present a construction of extended Nichols-Woronowicz algebra model for the equivariant cohomology of the corresponding flag variety.
164 - Stefan Waldmann 2012
A bilinear form on a possibly graded vector space $V$ defines a graded Poisson structure on its graded symmetric algebra together with a star product quantizing it. This gives a model for the Weyl algebra in an algebraic framework, only requiring a field of characteristic zero. When passing to $mathbb{R}$ or $mathbb{C}$ one wants to add more: the convergence of the star product should be controlled for a large completion of the symmetric algebra. Assuming that the underlying vector space carries a locally convex topology and the bilinear form is continuous, we establish a locally convex topology on the Weyl algebra such that the star product becomes continuous. We show that the completion contains many interesting functions like exponentials. The star product is shown to converge absolutely and provides an entire deformation. We show that the completion has an absolute Schauder basis whenever $V$ has an absolute Schauder basis. Moreover, the Weyl algebra is nuclear iff $V$ is nuclear. We discuss functoriality, translational symmetries, and equivalences of the construction. As an example, we show how the Peierls bracket in classical field theory on a globally hyperbolic spacetime can be used to obtain a local net of Weyl algebras.
To any 2x2-matrix K one assigns a commutative subalgebra B^{K}subset U(gl_2[t]) called a Bethe algebra. We describe relations between the Bethe algebras, associated with the zero matrix and a nilpotent matrix.
223 - Seung Jin Lee 2015
We construct the affine version of the Fomin-Kirillov algebra, called the affine FK algebra, to investigate the combinatorics of affine Schubert calculus for type $A$. We introduce Murnaghan-Nakayama elements and Dunkl elements in the affine FK algebra. We show that they are commutative as Bruhat operators, and the commutative algebra generated by these operators is isomorphic to the cohomology of the affine flag variety. We show that the cohomology of the affine flag variety is product of the cohomology of an affine Grassmannian and a flag variety, which are generated by MN elements and Dunkl elements respectively. The Schubert classes in cohomology of the affine Grassmannian (resp. the flag variety) can be identified with affine Schur functions (resp. Schubert polynomials) in a quotient of the polynomial ring. Affine Schubert polynomials, polynomial representatives of the Schubert class in the cohomology of the affine flag variety, can be defined in the product of two quotient rings using the Bernstein-Gelfand-Gelfand operators interpreted as divided difference operators acting on the affine Fomin-Kirillov algebra. As for other applications, we obtain Murnaghan-Nakayama rules both for the affine Schubert polynomials and affine Stanley symmetric functions. We also define $k$-strong-ribbon tableaux from Murnaghan-Nakayama elements to provide a new formula of $k$-Schur functions. This formula gives the character table of the representation of the symmetric group whose Frobenius characteristic image is the $k$-Schur function.
In this paper we study sufficient conditions for the solvability of the first Hochschild cohomology of a finite dimensional algebra as a Lie algebra in terms of its Ext-quiver in arbitrary characteristic. In particular, we show that if the quiver has no parallel arrows and no loops then the first Hochschild cohomology is solvable. For quivers containing loops, we determine easily verifiable sufficient conditions for the solvability of the first Hochschild cohomology. We apply these criteria to show the solvability of the first Hochschild cohomology space for large families of algebras, namely, several families of self-injective tame algebras including all tame blocks of finite groups and some wild algebras including most quantum complete intersections.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا