Do you want to publish a course? Click here

Modified percolation theory and its relevance to quantum critical phenomena

144   0   0.0 ( 0 )
 Added by Tom Heitmann
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the results of a percolation-like model that has been restricted compared to standard percolation models in the sense that we do not allow finite sized clusters to break up once they have formed. We calculate the critical exponents for this model and derive relationships between these exponents and those of standard percolation models. We argue that this restricted model represents a new universality class that is directly relevant to the critical physics as observed in quantum critical systems, and we describe under what conditions our percolation results can be applied to the observed temperature and field dependencies of the specific heat and susceptibility in such systems.



rate research

Read More

We compute critical properties of a general class of quantum spin chains which are quadratic in the Fermi operators and can be solved exactly under certain symmetry constraints related to the classical compact groups $U(N)$, $O(N)$ and $Sp(2N)$. In particular we calculate critical exponents $s$, $ u$ and $z$, corresponding to the energy gap, correlation length and dynamic exponent respectively. We also compute the ground state correlators $leftlangle sigma^{x}_{i} sigma^{x}_{i+n} rightrangle_{g}$, $leftlangle sigma^{y}_{i} sigma^{y}_{i+n} rightrangle_{g}$ and $leftlangle prod^{n}_{i=1} sigma^{z}_{i} rightrangle_{g}$, all of which display quasi-long-range order with a critical exponent dependent upon system parameters. Our approach establishes universality of the exponents for the class of systems in question.
Landau theory is used to investigate the behaviour of a metallic magnet driven towards a quantum critical point by the application of pressure. The observed dependence of the transition temperature with pressure is used to show that the coupling of the magnetic order to the lattice diverges as the quantum critical point is approached. This means that a first order transition will occur in magnets (both ferromagnets and antiferromagnets) because of the coupling to the lattice. The Landau equations are solved numerically without further approximations. There are other mechanisms that can cause a first order transition so the significance of this work is that it will enable us to determine the extent to which any particular first order transition is driven by coupling to the lattice or if other causes are responsible.
The superfluid transition in liquid 4He filled in Gelsil glass observed in recent experiments is discussed in the framework of quantum critical phenomena. We show that quantum fluctuations of phase are indeed important at the experimentally studied temperature range owing to the small pore size of Gelsil, in contrast to 4He filled in previously studied porous media such as Vycor glass. As a consequence of an effective particle-hole symmetry, the quantum critical phenomena of the system are described by the 4D XY universality class, except at very low temperatures. The simple scaling agrees with the experimental data remarkably well.
We propose a generic scaling theory for critical phenomena that includes power-law and essential singularities in finite and infinite dimensional systems. In addition, we clarify its validity by analyzing the Potts model in a simple hierarchical network, where a saddle-node bifurcation of the renormalization-group fixed point governs the essential singularity.
In this paper we study the critical behavior of an $N$-component ${phi}^{4}$-model in hyperbolic space, which serves as a model of uniform frustration. We find that this model exhibits a second-order phase transition with an unusual magnetization texture that results from the lack of global parallelism in hyperbolic space. Angular defects occur on length scales comparable to the radius of curvature. This phase transition is governed by a new strong curvature fixed point that obeys scaling below the upper critical dimension $d_{uc}=4$. The exponents of this fixed point are given by the leading order terms of the $1/N$ expansion. In distinction to flat space no order $1/N$ corrections occur. We conclude that the description of many-particle systems in hyperbolic space is a promising avenue to investigate uniform frustration and non-trivial critical behavior within one theoretical approach.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا