No Arabic abstract
We report on unusually very hard spectral states in three confirmed neutron-star low-mass X-ray binaries (1RXS J180408.9-342058, EXO 1745-248, and IGR J18245-2452) at a luminosity between ~ 10^{36-37} erg s^{-1}. When fitting the Swift X-ray spectra (0.5 - 10 keV) in those states with an absorbed power-law model, we found photon indices of Gamma ~ 1, significantly lower than the Gamma = 1.5 - 2.0 typically seen when such systems are in their so called hard state. For individual sources very hard spectra were already previously identified but here we show for the first time that likely our sources were in a distinct spectral state (i.e., different from the hard state) when they exhibited such very hard spectra. It is unclear how such very hard spectra can be formed; if the emission mechanism is similar to that operating in their hard states (i.e., up-scattering of soft photons due to hot electrons) then the electrons should have higher temperatures or a higher optical depth in the very hard state compared to those observed in the hard state. By using our obtained Gamma as a tracer for the spectral evolution with luminosity, we have compared our results with those obtained by Wijnands et al. (2015). We confirm their general results in that also our sample of sources follow the same track as the other neutron star systems, although we do not find that the accreting millisecond pulsars are systematically harder than the non-pulsating systems.
Here we study the rapid X-ray variability (using XMM-Newton observations) of three neutron-star low-mass X-ray binaries (1RXS J180408.9-342058, EXO 1745-248, and IGR J18245-2452) during their recently proposed very hard spectral state (Parikh et al. 2017). All our systems exhibit a strong to very strong noise component in their power density spectra (rms amplitudes ranging from 34% to 102%) with very low characteristic frequencies (as low as 0.01 Hz). These properties are more extreme than what is commonly observed in the canonical hard state of neutron-star low-mass X-ray binaries observed at X-ray luminosities similar to those we observe from our sources. This suggests that indeed the very hard state is a distinct spectral-timing state from the hard state, although we argue that the variability behaviour of IGR J18245-2452 is very extreme and possibly this source was in a very unusual state. We also compare our results with the rapid X-ray variability of the accreting millisecond X-ray pulsars IGR J00291+5934 and Swift J0911.9-6452 (also using XMM-Newton data) for which previously similar variability phenomena were observed. Although their energy spectra (as observed using the Swift X-ray telescope) were not necessarily as hard (i.e., for Swift J0911.9-6452) as for our other three sources, we conclude that likely both sources were also in very similar state during their XMM-Newton observations. This suggest that different sources that are found in this new state might exhibit different spectral hardness and one has to study both the spectral as well as rapid variability to identify this unusual state.
Binary systems with a neutron-star primary accreting from a companion star display variability in the X-ray band on time scales ranging from years to milliseconds. With frequencies of up to ~1300 Hz, the kilohertz quasi-periodic oscillations (kHz QPOs) represent the fastest variability observed from any astronomical object. The sub-millisecond time scale of this variability implies that the kHz QPOs are produced in the accretion flow very close to the surface of the neutron star, providing a unique view of the dynamics of matter under the influence of some of the strongest gravitational fields in the Universe. This offers the possibility to probe some of the most extreme predictions of General Relativity, such as dragging of inertial frames and periastron precession at rates that are sixteen orders of magnitude faster than those observed in the solar system and, ultimately, the existence of a minimum distance at which a stable orbit around a compact object is possible. Here we review the last twenty years of research on kHz QPOs, and we discuss the prospects for future developments in this field.
We search the literature for reports on the spectral properties of neutron-star low-mass X-ray binaries when they have accretion luminosities between 1E34 and 1E36 ergs/s. We found that in this luminosity range the photon index (obtained from fitting a simple absorbed power-law in the 0.5-10 keV range) increases with decreasing 0.5-10 keV X-ray luminosity (i.e., the spectrum softens). Such behaviour has been reported before for individual sources, but here we demonstrate that very likely most (if not all) neutron-star systems behave in a similar manner and possibly even follow a universal relation. When comparing the neutron-star systems with black-hole systems, it is clear that most black-hole binaries have significantly harder spectra at luminosities of 1E34 - 1E35 erg/s. Despite a limited number of data points, there are indications that these spectral differences also extend to the 1E35 - 1E36 erg/s range. This observed difference between the neutron-star binaries and black-hole ones suggests that the spectral properties (between 0.5-10 keV) at 1E34 - 1E35 erg/s can be used to tentatively determine the nature of the accretor in unclassified X-ray binaries. We discuss our results in the context of properties of the accretion flow at low luminosities and we suggest that the observed spectral differences likely arise from the neutron-star surface becoming dominantly visible in the X-ray spectra. We also suggest that both the thermal component and the non-thermal component might be caused by low-level accretion onto the neutron-star surface for luminosities below a few times 1E34 erg/s.
The application of standard accretion theory to observations of X-ray binaries provides valuable insights into neutron star properties, such as their spin period and magnetic field. However, most studies concentrate on relatively old systems, where the neutron star is in its late propeller, accretor, or nearly spin equilibrium phase. Here we use an analytic model from standard accretion theory to illustrate the evolution of high-mass X-ray binaries early in their life. We show that a young neutron star is unlikely to be an accretor because of the long duration of ejector and propeller phases. We apply the model to the recently discovered ~4000 yr old high-mass X-ray binary XMMU J051342.6-672412 and find that the systems neutron star, with a tentative spin period of 4.4 s, cannot be in the accretor phase and has a magnetic field B > (a few)x10^13 G, which is comparable to the magnetic field of many older high-mass X-ray binaries and is much higher than the spin equilibrium inferred value of (a few)x10^11 G. The observed X-ray luminosity could be the result of thermal emission from a young cooling magnetic neutron star or a small amount of accretion that can occur in the propeller phase.
Low-mass X-ray binaries (LMXBs) have a wide range of X-ray properties which can be utilised to reveal many physical conditions of the associated accretion discs. We use the spectral synthesis code CLOUDY to perform a detailed modelling of neutron star LMXBs GX 13+1, MXB 1659--298, 4U 1323--62 and XB 1916--053; and characterise the underlying physical conditions, such as density, radiation field, metallicity, wind velocity, etc. For this purpose we model highly ionised spectra of Fe, Ca, S, Si, Mg, Al in the soft X-ray band, and compare the predicted line flux ratios with the observed values. We also find that the strength and profile of these spectral lines get modified in the presence of magnetic field in the accretion disc. Using this, we estimate an upper limit of the existing magnetic field to be about a few hundred to a few thousand G in the accretion discs of these four LMXBs.