Do you want to publish a course? Click here

Electrical Control of the Chemical Bonding of Fluorine on Graphene

320   0   0.0 ( 0 )
 Added by Gonzalo Usaj
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the electronic structure of diluted F atoms chemisorbed on graphene using density functional theory calculations. We show that the nature of the chemical bonding of a F atom adsorbed on top of a C atom in graphene strongly depends on carrier doping. In neutral samples the F impurities induce a sp^3-like bonding of the C atom below, generating a local distortion of the hexagonal lattice. As the graphene is electron-doped, the C atom retracts back to the graphene plane and for high doping (10^14 cm^-2) its electronic structure corresponds to a nearly pure sp^2 configuration. We interpret this sp^3-sp^2 doping-induced crossover in terms of a simple tight binding model and discuss the physical consequences of this change.

rate research

Read More

Controlling the energy flow processes and the associated energy relaxation rates of a light emitter is of high fundamental interest, and has many applications in the fields of quantum optics, photovoltaics, photodetection, biosensing and light emission. While advanced dielectric and metallic systems have been developed to tailor the interaction between an emitter and its environment, active control of the energy flow has remained challenging. Here, we demonstrate in-situ electrical control of the relaxation pathways of excited erbium ions, which emit light at the technologically relevant telecommunication wavelength of 1.5 $mu$m. By placing the erbium at a few nanometres distance from graphene, we modify the relaxation rate by more than a factor of three, and control whether the emitter decays into either electron-hole pairs, emitted photons or graphene near-infrared plasmons, confined to $<$15 nm to the sheet. These capabilities to dictate optical energy transfer processes through electrical control of the local density of optical states constitute a new paradigm for active (quantum) photonics.
We study the intervalley scattering in defected graphene by low-temperature transport measurements. The scattering rate is strongly suppressed when defects are charged. This finding highlights screening of the short-range part of a potential by the long-range part. Experiments on calcium-adsorbed graphene confirm the role of a long-range Coulomb potential. This effect is applicable to other multivalley systems, provided that the charge state of a defect can be electrically tuned. Our result provides a means to electrically control valley relaxation and has important implications in valley dynamics in valleytronic materials.
We explore the tunability of the phonon polarization in suspended uniaxially strained graphene by magneto-phonon resonances. The uniaxial strain lifts the degeneracy of the LO and TO phonons, yielding two cross-linearly polarized phonon modes and a splitting of the Raman G peak. We utilize the strong electron-phonon coupling in graphene and the off-resonant coupling to a magneto-phonon resonance to induce a gate-tunable circular phonon dichroism. This, together with the strain-induced splitting of the G peak, allows us to controllably tune the two linearly polarized G mode phonons into circular phonon modes. We are able to achieve a circular phonon polarization of up to 40 % purely by electrostatic fields and can reverse its sign by tuning from electron to hole doping. This provides unprecedented electrostatic control over the angular momentum of phonons, which paves the way toward phononic applications.
The use of Floquet theory combined with a realistic description of the electronic structure of illuminated graphene and graphene nanoribbons is developed to assess the emergence of non-adiabatic and non-perturbative effects on the electronic properties. Here, we introduce an efficient computational scheme and illustrate its use by applying it to graphene nanoribbons in the presence of both linear and circular polarization. The interplay between confinement due to the finite sample size and laser-induced transitions is shown to lead to sharp features on the average conductance and density of states. Particular emphasis is given to the emergence of the bulk limit response.
A stochastic nonlinear electrical characteristic of graphene is reported. Abrupt current changes are observed from voltage sweeps between the source and drain with an on/off ratio up to 10^(3). It is found that graphene channel experience the topological change. Active radicals in an uneven graphene channel cause local changes of electrostatic potential. Simulation results based on the self-trapped electron and hole mechanism account well for the experimental data. Our findings illustrate an important issue of reliable electron transports and help for the understanding of transport properties in graphene devices.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا