Do you want to publish a course? Click here

Spatially Modulated Interaction Induced Bound States and Scattering Resonances

112   0   0.0 ( 0 )
 Added by Ran Qi
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the two-body problem with a spatially modulated interaction potential using a two-channel model, in which the inter-channel coupling is provided by an optical standing wave and its strength modulates periodically in space. As the modulation amplitudes increases, there will appear a sequence of bound states. Part of them will cause divergence of the effective scattering length, defined through the phase shift in the asymptotic behavior of scattering states. We also discuss how the local scattering length, defined through short-range behavior of scattering states, modulates spatially in different regimes. These results provide a theoretical guideline for new control technique in cold atom toolbox, in particular, for alkali-earth-(like) atoms where the inelastic loss is small.



rate research

Read More

Impurities in a Fermi sea, or Fermi polarons, experience a Casimir interaction induced by quantum fluctuations of the medium. When there is short-range attraction between impurities and fermions, also the induced interaction between two impurities is strongly attractive at short distance and oscillates in space for larger distances. We theoretically investigate the scattering properties and compute the scattering phase shifts and scattering lengths between two heavy impurities in an ideal Fermi gas at zero temperature. While the induced interaction between impurities is weakly attractive for weak impurity-medium interactions, we find that impurities strongly and attractively interacting with the medium exhibit resonances in the induced scattering with a sign change of the induced scattering length and even strong repulsion. These resonances occur whenever a three-body Efimov bound state appears at the continuum threshold. At energies above the continuum threshold, we find that the Efimov state in medium can turn into a quasibound state with a finite decay width.
136 - Zhe-Yu Shi , Ran Qi , Hui Zhai 2011
We show that s-wave scattering resonances induced by dipolar interactions in a polar molecular gas have a universal large and positive effective range, which is very different from Feshbach resonances realized in cold atoms before, where the effective range is either negligible or negative. Such a difference has important consequence in many-body physics. At high temperature regime, a positive effective range gives rise to stronger repulsive interaction energy for positive scattering length, and weaker attractive interaction energy for negative scattering length. While at low-temperatures, we study polaron problem formed by single impurity molecule, and we find that the polaron binding energy increases at the BEC side and decreases at the BCS side. All these effects are in opposite to narrow Feshbach resonances where the effective range is negative.
We present an Asymptotic Bound-state Model which can be used to accurately describe all Feshbach resonance positions and widths in a two-body system. With this model we determine the coupled bound states of a particular two-body system. The model is based on analytic properties of the two-body Hamiltonian, and on asymptotic properties of uncoupled bound states in the interaction potentials. In its most simple version, the only necessary parameters are the least bound state energies and actual potentials are not used. The complexity of the model can be stepwise increased by introducing threshold effects, multiple vibrational levels and additional potential parameters. The model is extensively tested on the 6Li-40K system and additional calculations on the 40K-87Rb system are presented.
We describe bound states, resonances and elastic scattering of light ions using a $delta$-shell potential. Focusing on low-energy data such as energies of bound states and resonances, charge radii, asymptotic normalization coefficients, effective-range parameters, and phase shifts, we adjust the two parameters of the potential to some of these observables and make predictions for the nuclear systems $d+alpha$, $mbox{$^3$He}+alpha$, $mbox{$^3$He}+alpha$, $alpha+alpha$, and $p+mbox{$^{16}$O}$. We identify relevant momentum scales for Coulomb halo nuclei and propose how to apply systematic corrections to the potentials. This allows us to quantify statistical and systematic uncertainties. We present a constructive criticism of Coulomb halo effective field theory and compute the unknown charge radius of $^{17}$F.
We provide a theoretical framework describing slow-light polaritons interacting via atomic Rydberg states. We use a diagrammatic method to analytically derive the scattering properties of two polaritons. We identify parameter regimes where polariton-polariton interactions are repulsive. Furthermore, in the regime of attractive interactions, we identify multiple two-polariton bound states, calculate their dispersion, and study the resulting scattering resonances. Finally, the two-particle scattering properties allow us to derive the effective low-energy many-body Hamiltonian. This theoretical platform is applicable to ongoing experiments.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا