Do you want to publish a course? Click here

$Nbar N$ Scattering at NLO Order in An Effective Theory

143   0   0.0 ( 0 )
 Added by J. P. Ma
 Publication date 2011
  fields
and research's language is English




Ask ChatGPT about the research

We have proposed to use an effective theory to describe interactions of an $Nbar N$-system. The effective theory can be constructed in analogy to the existing effective theory for an $NN$-system. In this work we study the next-to-leading order correction to $Nbar N$ scattering near the threshold in the effective theory. We find that the experimental data can be well described with the effective theory.



rate research

Read More

We perform global fit to the quark Sivers function within the transverse momentum dependent (TMD) factorization formalism in QCD. We simultaneously fit Sivers asymmetry data from Semi-Inclusive Deep Inelastic Scattering (SIDIS) at COMPASS, HERMES, and JLab, from Drell-Yan lepton pair production at COMPASS, and from $W/Z$ boson at RHIC. This extraction is performed at next-to-leading order (NLO) and next-to-next-to leading logarithmic (NNLL) accuracy. We find excellent agreement between our extracted asymmetry and the experimental data for SIDIS and Drell-Yan lepton pair production, while tension arises when trying to describe the spin asymmetries of $W/Z$ bosons at RHIC. We carefully assess the situation, and we study in details the impact of the RHIC data and their implications through different ways of performing the fit. In addition, we find that the quality of the description of $W/Z$ vector boson asymmetry data could be strongly sensitive to the DGLAP evolution of Qiu-Sterman function, besides the usual TMD evolution. We present discussion on this and the implications for measurements of the transverse-spin asymmetries at the future Electron Ion Collider.
125 - V. Guzey , M. Klasen 2019
We present a next-to-leading order QCD calculation of inclusive dijet photoproduction in ultraperipheral Pb-Pb collisions at the LHC and show that the results agree very well with various kinematic distributions measured by the ATLAS collaboration. The effect of including these data in nCTEQ or EPPS16 nuclear parton density functions (nPDFs) is then studied using the Bayesian reweighting technique. For an assumed total error of 5% on the final data, its inclusion would lead to a significant reduction of the nPDF uncertainties of up to a factor of two at small values of the parton momentum fraction. As an outlook, we discuss future analyes of diffractive nPDFs, which are so far completely unknown.
The anti-kaon nucleon scattering lengths resulting from a Hamiltonian effective field theory analysis of experimental data and lattice QCD studies are presented. The same Hamiltonian is then used to compute the scattering length for the $K^- d$ system, taking careful account of the effects of recoil on the energy at which the $bar{K}N$ T-matrices are evaluated. These results are then used to estimate the shift and width of the $1S$ levels of anti-kaonic hydrogen and deuterium. The $K^- p$ result is in excellent agreement with the SIDDHARTA measurement. In the $K^- d$ case the imaginary part of the scattering length and consequently the width of the $1S$ state are considerably larger than found in earlier work. This is a consequence of the effect of recoil on the energy of the $bar{K}N$ energy, which enhances the role of the $Lambda(1405)$ resonance.
Theoretical predictions for elastic neutrino-electron scattering have no hadronic or nuclear uncertainties at leading order making this process an important tool for normalizing neutrino flux. However, the process is subject to large radiative corrections that differ according to experimental conditions. In this paper, we collect new and existing results for total and differential cross sections accompanied by radiation of one photon, $ u e to u e (gamma)$. We perform calculations within the Fermi effective theory and provide analytic expressions for the electron energy spectrum and for the total electromagnetic energy spectrum as well as for double- and triple-differential cross sections with respect to electron energy, electron angle, photon energy, and photon angle. We discuss illustrative applications to accelerator-based neutrino experiments and provide the most precise up-to-date values of neutrino-electron scattering cross sections. We present an analysis of theoretical error, which is dominated by the $sim 0.2 - 0.4%$ uncertainty of the hadronic correction. We also discuss how searches for new physics can be affected by radiative corrections.
In view of the good agreement between the LHCb prompt-eta(c) data at sqrt(s)=7 and 8 TeV and the NLO colour-singlet model predictions --i.e. the leading v^2 NRQCD contribution--, we provide predictions in the LHCb acceptance for the forthcoming 13 TeV analysis bearing on data taken during the LHC Run2. We also provide predictions for sqrt(s)=115 GeV for proton-hydrogen collisions in the fixed-target mode which could be studied during the LHC Run3. Our predictions are complemented by a full theoretical uncertainty analysis. In addition to cross section predictions, we elaborate on the uncertainties on the p bar-p branching ratio --necessary for data-theory comparison-- and discuss other usable branching fractions for future studies.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا