No Arabic abstract
We describe the CRASH (Center for Radiative Shock Hydrodynamics) code, a block adaptive mesh code for multi-material radiation hydrodynamics. The implementation solves the radiation diffusion model with the gray or multigroup method and uses a flux limited diffusion approximation to recover the free-streaming limit. The electrons and ions are allowed to have different temperatures and we include a flux limited electron heat conduction. The radiation hydrodynamic equations are solved in the Eulerian frame by means of a conservative finite volume discretization in either one, two, or three-dimensional slab geometry or in two-dimensional cylindrical symmetry. An operator split method is used to solve these equations in three substeps: (1) solve the hydrodynamic equations with shock-capturing schemes, (2) a linear advection of the radiation in frequency-logarithm space, and (3) an implicit solve of the stiff radiation diffusion, heat conduction, and energy exchange. We present a suite of verification test problems to demonstrate the accuracy and performance of the algorithms. The CRASH code is an extension of the Block-Adaptive Tree Solarwind Roe Upwind Scheme (BATS-R-US) code with this new radiation transfer and heat conduction library and equation-of-state and multigroup opacity solvers. Both CRASH and BATS-R-US are part of the publicly available Space Weather Modeling Framework (SWMF).
We present a new special relativistic hydrodynamics (SRHD) code capable of handling coexisting ultra-relativistically hot and non-relativistically cold gases. We achieve this by designing a new algorithm for conversion between primitive and conserved variables in the SRHD solver, which incorporates a realistic ideal-gas equation of state covering both the relativistic and non-relativistic regimes. The code can handle problems involving a Lorentz factor as high as $10^6$ and optimally avoid the catastrophic cancellation. In addition, we have integrated this new SRHD solver into the code GAMER (https://github.com/gamer-project/gamer) to support adaptive mesh refinement and hybrid OpenMP/MPI/GPU parallelization. It achieves a peak performance of $7times 10^{7}$ cell updates per second on a single Tesla P100 GPU and scales well to 2048 GPUs. We apply this code to two interesting astrophysical applications: (a) an asymmetric explosion source on the relativistic blast wave and (b) the flow acceleration and limb-brightening of relativistic jets.
Radiative transfer has a strong impact on the collapse and the fragmentation of prestellar dense cores. We present the radiation-hydrodynamics solver we designed for the RAMSES code. The method is designed for astrophysical purposes, and in particular for protostellar collapse. We present the solver, using the co-moving frame to evaluate the radiative quantities. We use the popular flux limited diffusion approximation, under the grey approximation (one group of photon). The solver is based on the second-order Godunov scheme of RAMSES for its hyperbolic part, and on an implicit scheme for the radiation diffusion and the coupling between radiation and matter. We report in details our methodology to integrate the RHD solver into RAMSES. We test successfully the method against several conventional tests. For validation in 3D, we perform calculations of the collapse of an isolated 1 M_sun prestellar dense core, without rotation. We compare successfully the results with previous studies using different models for radiation and hydrodynamics. We have developed a full radiation hydrodynamics solver in the RAMSES code, that handles adaptive mesh refinement grids. The method is a combination of an explicit scheme and an implicit scheme, accurate to the second-order in space. Our method is well suited for star formation purposes. Results of multidimensional dense core collapse calculations with rotation are presented in a companion paper.
A new N-body and hydrodynamical code, called RAMSES, is presented. It has been designed to study structure formation in the universe with high spatial resolution. The code is based on Adaptive Mesh Refinement (AMR) technique, with a tree based data structure allowing recursive grid refinements on a cell-by-cell basis. The N-body solver is very similar to the one developed for the ART code (Kravtsov et al. 97), with minor differences in the exact implementation. The hydrodynamical solver is based on a second-order Godunov method, a modern shock-capturing scheme known to compute accurately the thermal history of the fluid component. The accuracy of the code is carefully estimated using various test cases, from pure gas dynamical tests to cosmological ones. The specific refinement strategy used in cosmological simulations is described, and potential spurious effects associated to shock waves propagation in the resulting AMR grid are discussed and found to be negligible. Results obtained in a large N-body and hydrodynamical simulation of structure formation in a low density LCDM universe are finally reported, with 256^3 particles and 4.1 10^7 cells in the AMR grid, reaching a formal resolution of 8192^3. A convergence analysis of different quantities, such as dark matter density power spectrum, gas pressure power spectrum and individual haloes temperature profiles, shows that numerical results are converging down to the actual resolution limit of the code, and are well reproduced by recent analytical predictions in the framework of the halo model.
We present Arepo-MCRT, a novel Monte Carlo radiative transfer (MCRT) radiation-hydrodynamics (RHD) solver for the unstructured moving-mesh code Arepo. Our method is designed for general multiple scattering problems in both optically thin and thick conditions. We incorporate numerous efficiency improvements and noise reduction schemes to help overcome efficiency barriers that typically inhibit convergence. These include continuous absorption and energy deposition, photon weighting and luminosity boosting, local packet merging and splitting, path-based statistical estimators, conservative (face-centered) momentum coupling, adaptive convergence between time steps, implicit Monte Carlo algorithms for thermal emission, and discrete-diffusion Monte Carlo techniques for unresolved scattering, including a novel advection scheme. We primarily focus on the unique aspects of our implementation and discussions of the advantages and drawbacks of our methods in various astrophysical contexts. Finally, we consider several test applications including the levitation of an optically thick layer of gas by trapped infrared radiation. We find that the initial acceleration phase and revitalized second wind are connected via self-regulation of the RHD coupling, such that the RHD method accuracy and simulation resolution each leave important imprints on the long-term behavior of the gas.
This paper describes the open-source code Enzo, which uses block-structured adaptive mesh refinement to provide high spatial and temporal resolution for modeling astrophysical fluid flows. The code is Cartesian, can be run in 1, 2, and 3 dimensions, and supports a wide variety of physics including hydrodynamics, ideal and non-ideal magnetohydrodynamics, N-body dynamics (and, more broadly, self-gravity of fluids and particles), primordial gas chemistry, optically-thin radiative cooling of primordial and metal-enriched plasmas (as well as some optically-thick cooling models), radiation transport, cosmological expansion, and models for star formation and feedback in a cosmological context. In addition to explaining the algorithms implemented, we present solutions for a wide range of test problems, demonstrate the codes parallel performance, and discuss the Enzo collaborations code development methodology.