Do you want to publish a course? Click here

The X-ray quiescence of Swift J195509.6+261406 (GRB 070610): an optical bursting X-ray binary?

420   0   0.0 ( 0 )
 Added by Nanda Rea
 Publication date 2011
  fields Physics
and research's language is English
 Authors N. Rea




Ask ChatGPT about the research

We report on a 63ks Chandra observation of the X-ray transient Swift J195509.6+261406 discovered as the afterglow of what was first believed to be a long duration Gamma-Ray Burst (GRB 070610). The outburst of this source was characterized by unique optical flares on timescales of second or less, morphologically similar to the short X-ray bursts usually observed from magnetars. Our Chandra observation was performed ~2 years after the discovery of the optical and X-ray flaring activity of this source, catching it in its quiescent state. We derive stringent upper limits on the quiescent emission of Swif J195509.6+261406 which argues against the possibility of this object being a typical magnetar. Our limits show that the most viable interpretation on the nature of this peculiar bursting source, is a binary system hosting a black hole or a neutron star with a low mass companion star (< 0.12 M_{odot}), and with an orbital period smaller than a few hours.



rate research

Read More

We present the results of our study of the X-ray spectrum for the source X-6 in the nearby galaxy M33 obtained for the first time at energies above 10 keV from the data of the NuSTAR orbital telescope. The archival Swift-XRT data for energy coverage below 3 keV have been used, which has allowed the spectrum of M33 X-6 to be constructed in the wide energy range 0.3-20 keV. The spectrum of the source is well described by the model of an optically and geometrically thick accretion disk with a maximum temperature of ~2 keV and an inner radius of ~5 cos^{-1/2}(theta) km (where theta is the unknown disk inclination angle with respect to the observer). There is also evidence for the presence of an additional hard component in the spectrum. The X-ray luminosity of M33 X-6 measured for the first time in the wide energy range 0.3-20 keV is ~2*10^{38} erg/s , with the luminosity in the hard 10-20 keV X-ray band being ~10% of the sources total luminosity. The results obtained suggest that X-6 may be a Z-source, i.e., an X-ray binary with subcritical accretion onto a weakly magnetized neutron star.
During our Swift/XRT program to obtain X-ray positions at arcsecond level for a sample of Galactic X-ray binaries, we discovered that SAX J0840.7+2248 is not a binary, but rather BeppoSAX/WFC+GRBM X-ray Rich GRB 980429. Here we report on this discovery and on the properties of this long, X-ray rich gamma-ray burst, from prompt to (very) late followup.
The propeller effect should cut off accretion in fast-spinning neutron star high mass X-ray binaries (HMXBs) at low mass transfer rates. However, accretion continues in some HMXBs at $L_{x} < 10^{34}$ erg s$^{-1}$, as evidenced by continuing pulsations. Indications of spectral softening in systems in the propeller regime suggest that some HMXBs are undergoing fundamental changes in their accretion regime. A 39 ks textit{XMM-Newton} observation of the transient HMXB V0332+53 found it at a very low X-ray luminosity ($L_{x} sim 4times 10^{32}$ erg s${^{-1}}$). A power-law spectral fit requires an unusually soft spectral index ($4.4^{+0.9}_{-0.6}$), while a magnetized neutron star atmosphere model, with temperature lt 6.7$pm 0.2$ K and inferred emitting radius of $sim0.2-0.3$ km, gives a good fit. We suggest that the quiescent X-ray emission from V0332+53 is mainly from a hot spot on the surface of the neutron star. We could not detect pulsations from V0332+53, due to the low count rate. Due to the high $N_H$, thermal emission from the rest of the neutron star could be only weakly constrained, to lt $<$6.14$^{+0.05}_{-6.14}$ K, or $<3times10^{33}$ erg s${^{-1}}$.
During normal Type I outbursts, the pulse profiles of Be/X-ray binary pulsars are found to be complex in soft X-ray energy ranges. The profiles in soft X-ray energy ranges are characterized by the presence of narrow absorption dips or dip-like features at several pulse phases. However, in hard X-ray energy ranges, the pulse profiles are rather smooth and single-peaked. Pulse phase-averaged spectroscopy of the these pulsars had been carried out during Type I outbursts. The broad-band spectrum of these pulsars were well described by partial covering high energy cutoff power-law model with interstellar absorption and Iron K_alpha emission line at 6.4 keV. Phase-resolved spectroscopy revealed that the presence of additional matter at certain pulse phases that partially obscured the emitted radiation giving rise to dips in the pulse profiles. The additional absorption is understood to be taking place by matter in the accretion streams that are phase locked with the neutron star. Optical/infrared observations of the companion Be star during these Type I outbursts showed that the increase in the X-ray intensity of the pulsar is coupled with the decrease in the optical/infrared flux of the companion star. There are also several changes in the IR/optical emission line profiles during these X-ray outbursts. The X-ray properties of these pulsars during Type I outbursts and corresponding changes in optical/infrared wavebands are discussed in this paper.
211 - C. Zurita 2010
We performed an optical/infrared study of the counterpart of the low-mass X-ray binary KS1731-260 to test its identification and obtain information about the donor. Optical and infrared images of the counterpart of KS1731-260 were taken in two different epochs (2001 and 2007) after the source returned to quiescence in X-rays. We compared those observations with obtained when KS 1731-260 was still active. We confirm the identification of KS1731-260 with the previously proposed counterpart and improve its position to RA=17:34:13.46 and DEC=-26:05:18.60. The H-band magnitude of this candidate showed a decline of ~1.7 mags from outburst to quiescence. In 2007 April we obtained R=22.8+-0.1 and I=20.9+-0.1 for KS1731-260. Similar optical brightness was measured in June 2001 and July 2007. The intrinsic optical color R-I is consistent with spectral types from F to G for the secondary although there is a large excess over that from the secondary at the infrared wavelengths. This may be due to emission from the cooler outer regions of the accretion disk. We cannot rule out a brown dwarf as a donor star, although it would require that the distance to the source is significantly lower than the 7 kpc reported by Muno et al. 2000.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا