Do you want to publish a course? Click here

Dissipative superfluid dynamics from gravity

317   0   0.0 ( 0 )
 Publication date 2011
  fields
and research's language is English




Ask ChatGPT about the research

Charged asymptotically AdS black branes in five dimensions are sometimes unstable to the condensation of charged scalar fields. For fields of infinite charge and squared mass -4 Herzog was able to analytically determine the phase transition temperature and compute the endpoint of this instability in the neighborhood of the phase transition. We generalize Herzogs construction by perturbing away from infinite charge in an expansion in inverse charge and use the solutions so obtained as input for the fluid gravity map. Our tube wise construction of patched up locally hairy black brane solutions yields a one to one map from the space of solutions of superfluid dynamics to the long wavelength solutions of the Einstein Maxwell system. We obtain explicit expressions for the metric, gauge field and scalar field dual to an arbitrary superfluid flow at first order in the derivative expansion. Our construction allows us to read off the the leading dissipative corrections to the perfect superfluid stress tensor, current and Josephson equations. A general framework for dissipative superfluid dynamics was worked out by Landau and Lifshitz for zero superfluid velocity and generalized to nonzero fluid velocity by Clark and Putterman. Our gravitational results do not fit into the 13 parameter Clark-Putterman framework. Purely within fluid dynamics we present a consistent new generalization of Clark and Puttermans equations to a set of superfluid equations parameterized by 14 dissipative parameters. The results of our gravitational calculation fit perfectly into this enlarged framework. In particular we compute all the dissipative constants for the gravitational superfluid.



rate research

Read More

We determine the most general form of the equations of relativistic superfluid hydrodynamics consistent with Lorentz invariance, time-reversal invariance, the Onsager principle and the second law of thermodynamics at first order in the derivative expansion. Once parity is violated, either because the $U(1)$ symmetry is anomalous or as a consequence of a different parity-breaking mechanism, our results deviate from the standard textbook analysis of superfluids. Our general equations require the specification of twenty parameters (such as the viscosity and conductivity). In the limit of small relative superfluid velocities we find a seven parameter set of equations. In the same limit, we have used the AdS/CFT correspondence to compute the parity odd contributions to the superfluid equations of motion for a generic holographic model and have verified that our results are consistent.
We generalise the computations of arXiv:0712.2456 to generate long wavelength, asymptotically locally AdS_5 solutions to the Einstein-dilaton system with a slowly varying boundary dilaton field and a weakly curved boundary metric. Upon demanding regularity, our solutions are dual, under the AdS/CFT correspondence, to arbitrary fluid flows in the boundary theory formulated on a weakly curved manifold with a prescribed slowly varying coupling constant. These solutions turn out to be parametrised by four-velocity and temperature fields that are constrained to obey the boundary covariant Navier Stokes equations with a dilaton dependent forcing term. We explicitly evaluate the stress tensor and Lagrangian as a function of the velocity, temperature, coupling constant and curvature fields, to second order in the derivative expansion and demonstrate the Weyl covariance of these expressions. We also construct the event horizon of the dual solutions to second order in the derivative expansion, and use the area form on this event horizon to construct an entropy current for the dual fluid. As a check of our constructions we expand the exactly known solutions for rotating black holes in global AdS_5 in a boundary derivative expansion and find perfect agreement with all our results upto second order. We also find other simple solutions of the forced fluid mechanics equations and discuss their bulk interpretation. Our results may aid in determining a bulk dual to forced flows exhibiting steady state turbulence.
Black branes in AdS5 appear in a four parameter family labeled by their velocity and temperature. Promoting these parameters to Goldstone modes or collective coordinate fields -- arbitrary functions of the coordinates on the boundary of AdS5 -- we use Einsteins equations together with regularity requirements and boundary conditions to determine their dynamics. The resultant equations turn out to be those of boundary fluid dynamics, with specific values for fluid parameters. Our analysis is perturbative in the boundary derivative expansion but is valid for arbitrary amplitudes. Our work may be regarded as a derivation of the nonlinear equations of boundary fluid dynamics from gravity. As a concrete application we find an explicit expression for the expansion of this fluid stress tensor including terms up to second order in the derivative expansion.
132 - B. Betz , D. Henkel , D.H. Rischke 2008
We present the results of deriving the Israel-Stewart equations of relativistic dissipative fluid dynamics from kinetic theory via Grads 14-moment expansion. Working consistently to second order in the Knudsen number, these equations contain several new terms which are absent in previous treatments.
We construct the holographic p-wave superfluid in Gauss-Bonnet gravity via a Maxwell complex vector field model and investigate the effect of the curvature correction on the superfluid phase transition in the probe limit. We obtain the rich phase structure and find that the higher curvature correction hinders the condensate of the vector field but makes it easier for the appearance of translating point from the second-order transition to the first-order one or for the emergence of the Cave of Winds. Moreover, for the supercurrents versus the superfluid velocity, we observe that our results near the critical temperature are independent of the Gauss-Bonnet parameter and agree well with the Ginzburg-Landau prediction.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا