No Arabic abstract
Ion traps offer the opportunity to study fundamental quantum systems with high level of accuracy highly decoupled from the environment. Individual atomic ions can be controlled and manipulated with electric fields, cooled to the ground state of motion with laser cooling and coherently manipulated using optical and microwave radiation. Microfabricated ion traps hold the advantage of allowing for smaller trap dimensions and better scalability towards large ion trap arrays also making them a vital ingredient for next generation quantum technologies. Here we provide an introduction into the principles and operation of microfabricated ion traps. We show an overview of material and electrical considerations which are vital for the design of such trap structures. We provide guidance in how to choose the appropriate fabrication design, consider different methods for the fabrication of microfabricated ion traps and discuss previously realized structures. We also discuss the phenomenon of anomalous heating of ions within ion traps, which becomes an important factor in the miniaturization of ion traps.
The advent of microfabricated ion traps for the quantum information community has allowed research groups to build traps that incorporate an unprecedented number of trapping zones. However, as device complexity has grown, the number of digital-to-analog converter (DAC) channels needed to control these devices has grown as well, with some of the largest trap assemblies now requiring nearly one hundred DAC channels. Providing electrical connections for these channels into a vacuum chamber can be bulky and difficult to scale beyond the current numbers of trap electrodes. This paper reports on the development and testing of an in-vacuum DAC system that uses only 9 vacuum feedthrough connections to control a 78-electrode microfabricated ion trap. The system is characterized by trapping single and multiple $^{40}$Ca$^+$ ions. The measured axial mode stability, ion heating rates, and transport fidelities for a trapped ion are comparable to systems with external(air-side) commercial DACs.
For many quantum information implementations with trapped ions, effective shuttling operations are important. Here we discuss the efficient separation and recombination of ions in surface ion trap geometries. The maximum speed of separation and recombination of trapped ions for adiabatic shuttling operations depends on the secular frequencies the trapped ion experiences in the process. Higher secular frequencies during the transportation processes can be achieved by optimising trap geometries. We show how two different arrangements of segmented static potential electrodes in surface ion traps can be optimised for fast ion separation or recombination processes. We also solve the equations of motion for the ion dynamics during the separation process and illustrate important considerations that need to be taken into account to make the process adiabatic.
State-of-the-art microfabricated ion traps for quantum information research are approaching nearly one hundred control electrodes. We report here on the development and testing of a new architecture for microfabricated ion traps, built around ball-grid array (BGA) connections, that is suitable for increasingly complex trap designs. In the BGA trap, through-substrate vias bring electrical signals from the back side of the trap die to the surface trap structure on the top side. Gold-ball bump bonds connect the back side of the trap die to an interposer for signal routing from the carrier. Trench capacitors fabricated into the trap die replace area-intensive surface or edge capacitors. Wirebonds in the BGA architecture are moved to the interposer. These last two features allow the trap die to be reduced to only the area required to produce trapping fields. The smaller trap dimensions allow tight focusing of an addressing laser beam for fast single-qubit rotations. Performance of the BGA trap as characterized with $^{40}$Ca$^+$ ions is comparable to previous surface-electrode traps in terms of ion heating rate, mode frequency stability, and storage lifetime. We demonstrate two-qubit entanglement operations with $^{171}$Yb$^+$ ions in a second BGA trap.
This submission is an introduction to microfabricated ion traps. We cover the basics of Paul traps, various geometries for realizing the traps, a number of design considerations, and, finally, a review of existing microfabricated traps.
The prospect of building a quantum information processor underlies many recent advances ion trap fabrication techniques. Potentially, a quantum computer could be constructed from a large array of interconnected ion traps. We report on a micrometer-scale ion trap, fabricated from bulk silicon using micro-electromechanical systems (MEMS) techniques. The trap geometry is relatively simple in that the electrodes lie in a single plane beneath the ions. In such a trap we confine laser-cooled 24Mg+ ions approximately 40 microns above the surface. The fabrication technique and planar electrode geometry together make this approach amenable to scaling up to large trap arrays. In addition we observe that little laser cooling light is scattered by the electrodes.