No Arabic abstract
We study the Cauchy problem for the Korteweg-de Vries (KdV) hierarchy in the small dispersion limit where $eto 0$. For negative analytic initial data with a single negative hump, we prove that for small times, the solution is approximated by the solution to the hyperbolic transport equation which corresponds to $e=0$. Near the time of gradient catastrophe for the transport equation, we show that the solution to the KdV hierarchy is approximated by a particular Painleve transcendent. This supports Dubrovins universality conjecture concerning the critical behavior of Hamiltonian perturbations of hyperbolic equations. We use the Riemann-Hilbert approach to prove our results.
Recently R. Pandharipande, J. Solomon and R. Tessler initiated a study of the intersection theory on the moduli space of Riemann surfaces with boundary. They conjectured that the generating series of the intersection numbers is a specific solution of a system of PDEs, that they called the open KdV equations. In this paper we show that the open KdV equations are closely related to the equations for the wave function of the KdV hierarchy. This allows us to give an explicit formula for the specific solution in terms of Wittens generating series of the intersection numbers on the moduli space of stable curves.
begin{abstract} We show that if the initial profile $qleft( xright) $ for the Korteweg-de Vries (KdV) equation is essentially semibounded from below and $int^{infty }x^{5/2}leftvert qleft( xright) rightvert dx<infty,$ (no decay at $-infty$ is required) then the KdV has a unique global classical solution given by a determinant formula. This result is best known to date. end{abstract}
We study Fredholm determinants related to a family of kernels which describe the edge eigenvalue behavior in unitary random matrix models with critical edge points. The kernels are natural higher order analogues of the Airy kernel and are built out of functions associated with the Painleve I hierarchy. The Fredholm determinants related to those kernels are higher order generalizations of the Tracy-Widom distribution. We give an explicit expression for the determinants in terms of a distinguished smooth solution to the Painleve II hierarchy. In addition we compute large gap asymptotics for the Fredholm determinants.
We present an explicit method to perform similarity reduction of a Riemann-Hilbert factorization problem for a homogeneous GL (N, C) loop group and use our results to find solutions to the Painleve VI equation for N=3. The tau function of the reduced hierarchy is shown to satisfy the sigma-form of the Painleve VI equation. A class of tau functions of the reduced integrable hierarchy is constructed by means of a Grassmannian formulation. These solutions provide rational solutions of the Painleve VI equation.
We study the statistics of backward clusters in a gas of hard spheres at low density. A backward cluster is defined as the group of particles involved directly or indirectly in the backwards-in-time dynamics of a given tagged sphere. We derive upper and lower bounds on the average size of clusters by using the theory of the homogeneous Boltzmann equation combined with suitable hierarchical expansions. These representations are known in the easier context of Maxwellian molecules (Wild sums). We test our results with a numerical experiment based on molecular dynamics simulations.