No Arabic abstract
The vast majority of Type II supernovae (SNe) are produced by red supergiants (RSGs), but SN 1987A revealed that blue supergiants (BSGs) can produce members of this class as well, albeit with some peculiar properties. This best studied event revolutionized our understanding of SNe, and linking it to the bulk of Type II events is essential. We present here optical photometry and spectroscopy gathered for SN 2000cb, which is clearly not a standard Type II SN and yet is not a SN 1987A analog. The light curve of SN 2000cb is reminiscent of that of SN 1987A in shape, with a slow rise to a late optical peak, but on substantially different time scales. Spectroscopically, SN 2000cb resembles a normal SN II but with ejecta velocities that far exceed those measured for SN 1987A or normal SNe II, above 18000 km/s for H-alpha at early times. The red colours, high velocities, late photometric peak, and our modeling of this object all point toward a scenario involving the high-energy explosion of a small-radius star, most likely a BSG, producing 0.1 solar masses of Ni-56. Adding a similar object to the sample, SN 2005ci, we derive a rate of about 2% of the core-collapse rate for this loosely defined class of BSG explosions.
Type Ia Supernovae have yet again the opportunity to revolutionize the field of cosmology as the new generation of surveys are acquiring thousands of nearby SNeIa opening a new era in cosmology: the direct measurement of the growth of structure parametrized by $fD$. This method is based on the SNeIa peculiar velocities derived from the residual to the Hubble law as direct tracers of the full gravitational potential caused by large scale structure. With this technique, we could probe not only the properties of dark energy, but also the laws of gravity. In this paper we present the analytical framework and forecasts. We show that ZTF and LSST will be able to reach 5% precision on $fD$ by 2027. Our analysis is not significantly sensitive to photo-typing, but known selection functions and spectroscopic redshifts are mandatory. We finally introduce an idea of a dedicated spectrograph that would get all the required information in addition to boost the efficiency to each SNeIa so that we could reach the 5% precision within the first two years of LSST operation and the few percent level by the end of the survey.
We present the Democratic Samples of Supernovae (DSS), a compilation of 775 low-redshift Type Ia and II supernovae (SNe Ia & II), of which 137 SN Ia distances are derived via the newly developed snapshot distance method. Using the objects in the DSS as tracers of the peculiar-velocity field, we compare against the corresponding reconstruction from the 2M++ galaxy redshift survey. Our analysis -- which takes special care to properly weight each DSS subcatalogue and cross-calibrate the relative distance scales between them -- results in a measurement of the cosmological parameter combination $fsigma_8 = 0.390_{-0.022}^{+0.022}$ as well as an external bulk flow velocity of $195_{-23}^{+22}$ km s$^{-1}$ in the direction $(ell, b) = (292_{-7}^{+7}, -6_{-4}^{+5})$ deg, which originates from beyond the 2M++ reconstruction. Similarly, we find a bulk flow of $245_{-31}^{+32}$ km s$^{-1}$ toward $(ell, b) = (294_{-7}^{+7}, 3_{-5}^{+6})$ deg on a scale of $sim 30 h^{-1}$ Mpc if we ignore the reconstructed peculiar-velocity field altogether. Our constraint on $fsigma_8$ -- the tightest derived from SNe to date (considering only statistical error bars), and the only one to utilise SNe II -- is broadly consistent with other results from the literature. We intend for our data accumulation and treatment techniques to become the prototype for future studies that will exploit the unprecedented data volume from upcoming wide-field surveys.
In classical P-Cygni profiles, theory predicts emission to peak at zero rest velocity. However, supernova spectra exhibit emission that is generally blue shifted. While this characteristic has been reported in many supernovae, it is rarely discussed in any detail. Here we present an analysis of H-alpha emission-peaks using a dataset of 95 type II supernovae, quantifying their strength and time evolution. Using a post-explosion time of 30d, we observe a systematic blueshift of H-alpha emission, with a mean value of -2000 kms-1. This offset is greatest at early times but vanishes as supernovae become nebular. Simulations of Dessart et al. (2013) match the observed behaviour, reproducing both its strength and evolution in time. Such blueshifts are a fundamental feature of supernova spectra as they are intimately tied to the density distribution of ejecta, which falls more rapidly than in stellar winds. This steeper density structure causes line emission/absorption to be much more confined; it also exacerbates the occultation of the receding part of the ejecta, biasing line emission to the blue for a distant observer. We conclude that blue-shifted emission-peak offsets of several thousand kms-1 are a generic property of observations, confirmed by models, of photospheric-phase type II supernovae.
Peculiar velocities of type Ia supernova (SNIa) host galaxies affect the dark-energy parameter constraints in a small but very specific way: the parameters are biased in a single direction in parameter space that is a-priori knowable for a given SNIa dataset. We demonstrate the latter fact with a combination of inference from a cosmological N-body simulation with overwhelming statistics applied to the Pantheon SNIa data set, then confirm it by simple quantitative arguments. We quantify small modifications to the current analyses that would ensure that the effect of cosmological parameters is essentially guaranteed to be negligible.
Progressive increases in the precision of the Hubble-constant measurement via Cepheid-calibrated Type Ia supernovae (SNe Ia) have shown a discrepancy of $sim 4.4sigma$ with the current value inferred from Planck satellite measurements of the cosmic microwave background radiation and the standard $Lambda$CDM cosmological model. This disagreement does not appear to be due to known systematic errors and may therefore be hinting at new fundamental physics. Although all of the current techniques have their own merits, further improvement in constraining the Hubble constant requires the development of as many independent methods as possible. In this work, we use SNe II as standardisable candles to obtain an independent measurement of the Hubble constant. Using 7 SNe II with host-galaxy distances measured from Cepheid variables or the tip of the red giant branch, we derive H$_0= 75.8^{+5.2}_{-4.9}$ km s$^{-1}$ Mpc$^{-1}$ (statistical errors only). Our value favours that obtained from the conventional distance ladder (Cepheids + SNe Ia) and exhibits a difference of 8.4 km s$^{-1}$ Mpc$^{-1}$ from the Planck $+Lambda$CDM value. Adding an estimate of the systematic errors (2.8 km s$^{-1}$ Mpc$^{-1}$) changes the $sim 1.7sigma$ discrepancy with Planck $+Lambda$CDM to $sim 1.4sigma$. Including the systematic errors and performing a bootstrap simulation, we confirm that the local H$_0$ value exceeds the value from the early Universe with a confidence level of 95%. As in this work we only exchange SNe II for SNe Ia to measure extragalactic distances, we demonstrate that there is no evidence that SNe Ia are the source of the H$_0$ tension.