Do you want to publish a course? Click here

On Anomaly Matching and Holography

94   0   0.0 ( 0 )
 Added by Santi Peris
 Publication date 2011
  fields
and research's language is English




Ask ChatGPT about the research

We discuss the possible validity in QCD of a relation between Greens functions which has been recently suggested by Son and Yamamoto, based on a class of AdS/CFT-inspired models of QCD. Our conclusion is that the relation in question is unlikely to be implemented in QCD.



rate research

Read More

We consider deep inelastic scattering (DIS) on a nucleus described using a density expansion. In leading order, the scattering is dominated by the incoherent scattering on individual nucleons distributed using the Thomas-Fermi approximation. We use the holographic structure functions for DIS scattering on single nucleons to make a non-perturbative estimate of the nuclear structure function in leading order in the density. Our results are compared to the data in the large-x regime.
We study the chiral effective theory in the presence of QCD vortices. Gauge invariance requires novel terms from vortex singularities in the gauged Wess-Zumino-Witten action, which incorporate anomaly induced currents along the vortices. We examine these terms for systems with QCD axial domain-walls bounded by vortices (vortons) under magnetic fields. We discuss how the baryon and the electric charge conservations are satisfied in these systems through interplay between domain-walls and vortices, which manifests Callan-Harveys mechanism of the anomaly inflow.
We compute boundary correlation functions for scalar fields on tessellations of two- and three-dimensional hyperbolic geometries. We present evidence that the continuum relation between the scalar bulk mass and the scaling dimension associated with boundary-to-boundary correlation functions survives the truncation of approximating the continuum hyperbolic space with a lattice.
The correspondence between theories in anti-de Sitter space and conformal field theories in physical space-time leads to an analytic, semiclassical model for strongly-coupled QCD. Light-front holography allows hadronic amplitudes in the AdS fifth dimension to be mapped to frame-independent light-front wavefunctions of hadrons in physical space-time, thus providing a relativistic description of hadrons at the amplitude level. We identify the AdS coordinate $z$ with an invariant light-front coordinate $zeta$ which separates the dynamics of quark and gluon binding from the kinematics of constituent spin and internal orbital angular momentum. The result is a single-variable light-front Schrodinger equation for QCD which determines the eigenspectrum and the light-front wavefunctions of hadrons for general spin and orbital angular momentum. The mapping of electromagnetic and gravitational form factors in AdS space to their corresponding expressions in light-front theory confirms this correspondence. Some novel features of QCD are discussed, including the consequences of confinement for quark and gluon condensates and the behavior of the QCD coupling in the infrared. The distinction between static structure functions such as the probability distributions computed from the square of the light-front wavefunctions versus dynamical structure functions which include the effects of rescattering is emphasized. A new method for computing the hadronization of quark and gluon jets at the amplitude level, an event amplitude generator, is outlined.
110 - Stanley J. Brodsky 2018
QCD is not supersymmetrical in the traditional sense -- the QCD Lagrangian is based on quark and gluonic fields, not squarks nor gluinos. However, its hadronic eigensolutions conform to a representation of superconformal algebra, reflecting the underlying conformal symmetry of chiral QCD and its Pauli matrix representation. The eigensolutions of superconformal algebra provide a unified Regge spectroscopy of meson, baryon, and tetraquarks in the same 4-plet representation with a universal Regge slope. The pion $q bar q$ eigenstate has zero mass for $m_q=0.$ The superconformal relations also can be extended to heavy-light quark mesons and baryons. The combined approach of light-front holography and superconformal algebra also provides insight into the origin of the QCD mass scale and color confinement. A key observation is the remarkable dAFF principle which shows how a mass scale can appear in the Hamiltonian and the equations of motion while retaining the conformal symmetry of the action. When one applies the dAFF procedure to chiral QCD, a mass scale $kappa$ appears which determines universal Regge slopes, hadron masses in the absence of the Higgs coupling, and the mass parameter underlying the form of the nonperturbative QCD running coupling: $alpha_s(Q^2) propto exp{-{Q^2/4 kappa^2}}$, in agreement with the effective charge determined from measurements of the Bjorken sum rule. The mass scale $kappa$ underlying hadron masses can be connected to the parameter $Lambda_{overline {MS}}$ in the QCD running coupling by matching its predicted nonperturbative form to the perturbative QCD regime. One also obtains predictions for spacelike and timelike hadronic form factors, structure functions, distribution amplitudes, and transverse momentum distributions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا