No Arabic abstract
Stellar radial velocity (RV) measurements have proven to be a very successful method for detecting extrasolar planets. Analysing RV data to determine the parameters of the extrasolar planets is a significant statistical challenge owing to the presence of multiple planets and various degeneracies between orbital parameters. Determining the number of planets favoured by the observed data is an even more difficult task. Bayesian model selection provides a mathematically rigorous solution to this problem by calculating marginal posterior probabilities of models with different number of planets, but the use of this method in extrasolar planetary searches has been hampered by the computational cost of the evaluating Bayesian evidence. Nonetheless, Bayesian model selection has the potential to improve the interpretation of existing observational data and possibly detect yet undiscovered planets. We present a new and efficient Bayesian method for determining the number of extrasolar planets, as well as for inferring their orbital parameters, without having to calculate directly the Bayesian evidence for models containing a large number of planets. Instead, we work iteratively and at each iteration obtain a conservative lower limit on the odds ratio for the inclusion of an additional planet into the model. We apply this method to simulated data-sets containing one and two planets and successfully recover the correct number of planets and reliable constraints on the orbital parameters. We also apply our method to RV measurements of HD 37124, 47 Ursae Majoris and HD 10180. For HD 37124, we confirm that the current data strongly favour a three-planet system. We find strong evidence for the presence of a fourth planet in 47 Ursae Majoris, but its orbital period is suspiciously close to one year, casting doubt on its validity. For HD 10180 we find strong evidence for a six-planet system.
The search for extrasolar rocky planets has already found the first transiting rocky super-Earth, Corot 7b, with a surface temperature that allows for magma oceans. Here we ask if we could distinguish rocky planets with recent major volcanism by remote observation. We develop a model for volcanic eruptions on an Earth-like exoplanet based on the present day Earth, derive the observable features in emergent and transmission spectra for multiple scenarios of gas distribution and cloudcover. We calculate the observation time needed to detect explosive volcanism on exoplanets in primary as well as secondary eclipse and discuss the likelihood of observing volcanism on transiting Earth to super-Earth sized exoplanets. We find that sulfur dioxide from large explosive eruptions does present a spectral signal that is remotely detectable especially for secondary eclipse measurements around the closest stars using ground based telescopes, and report the frequency and magnitude of the expected signatures. Transit probability of planet in the habitable zone decreases with distance to the host star, making small, close by host stars the best targets
Stellar activity can induce signals in the radial velocities of stars, complicating the detection of orbiting low-mass planets. We present a method to determine the number of planetary signals present in radial-velocity datasets of active stars, using only radial-velocity observations. Instead of considering separate fits with different number of planets, we use a birth-death Markov chain Monte Carlo algorithm to infer the posterior distribution for the number of planets in a single run. In a natural way, the marginal distributions for the orbital parameters of all planets are also inferred. This method is applied to HARPS data of CoRoT-7. We confidently recover both CoRoT-7b and CoRoT-7c although the data show evidence for additional signals.
The magnetospheric emissions from extrasolar planets represent a science frontier for the next decade. All of the solar system giant planets and the Earth produce radio emissions as a result of interactions between their magnetic fields and the solar wind. In the case of the Earth, its magnetic field may contribute to its habitability by protecting its atmosphere from solar wind erosion and by preventing energetic particles from reaching its surface. Indirect evidence for at least some extrasolar giant planets also having magnetic fields includes the modulation of emission lines of their host stars phased with the planetary orbits, likely due to interactions between the stellar and planetary magnetic fields. If magnetic fields are a generic property of giant planets, then extrasolar giant planets should emit at radio wavelengths allowing for their direct detection. Existing observations place limits comparable to the flux densities expected from the strongest emissions. Additional sensitivity at low radio frequencies coupled with algorithmic improvements likely will enable a new means of detection and characterization of extrasolar planets within the next decade.
We investigate a new approach to the detection of companions to extrasolar planets beyond the transit method. We discuss the possibility of the existence of binary planets. We develop a method based on the imaging of a planet-companion as an unresolved system (but resolved from its parent star). It makes use of planet-companion mutual phenomena, namely mutual transits and mutual shadows. We show that companions can be detected and their radius measured down to lunar sizes.
(abridged) In the frame of the search for extrasolar planets and brown dwarfs around early-type main-sequence stars, we present the results obtained on the early F-type star Theta Cygni. Elodie and Sophie at OHP were used to obtain the spectra. Our dedicated radial-velocity measurement method was used to monitor the stars radial velocities over five years. We also use complementary, high angular resolution and high-contrast images taken with PUEO at CFHT. We show that Theta Cygni radial velocities are quasi-periodically variable, with a ~150-day period. These variations are not due to the ~0.35-Msun stellar companion that we detected in imaging at more than 46 AU from the star. The absence of correlation between the bisector velocity span variations and the radial velocity variations for this 7 km/s vsini star, as well as other criteria indicate that the observed radial velocity variations are not due to stellar spots. The observed amplitude of the bisector velocity span variations also seems to rule out stellar pulsations. However, we observe a peak in the bisector velocity span periodogram at the same period as the one found in the radial velocity periodogram, which indicates a probable link between these radial velocity variations and the low amplitude lineshape variations which are of stellar origin. Long-period variations are not expected from this type of star to our knowledge. If a stellar origin (hence of new type) was to be confirmed for these long-period radial velocity variations, this would have several consequences on the search for planets around main-sequence stars, both in terms of observational strategy and data analysis. An alternative explanation for these variable radial velocities is the presence of at least one planet of a few Jupiter masses orbiting at less than 1 AU. (abridged)