Do you want to publish a course? Click here

Extrasolar planets and brown dwarfs around A-F type stars - VII. Theta Cygni radial velocity variations: planets or stellar phenomenon?

175   0   0.0 ( 0 )
 Added by Morgan Desort
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

(abridged) In the frame of the search for extrasolar planets and brown dwarfs around early-type main-sequence stars, we present the results obtained on the early F-type star Theta Cygni. Elodie and Sophie at OHP were used to obtain the spectra. Our dedicated radial-velocity measurement method was used to monitor the stars radial velocities over five years. We also use complementary, high angular resolution and high-contrast images taken with PUEO at CFHT. We show that Theta Cygni radial velocities are quasi-periodically variable, with a ~150-day period. These variations are not due to the ~0.35-Msun stellar companion that we detected in imaging at more than 46 AU from the star. The absence of correlation between the bisector velocity span variations and the radial velocity variations for this 7 km/s vsini star, as well as other criteria indicate that the observed radial velocity variations are not due to stellar spots. The observed amplitude of the bisector velocity span variations also seems to rule out stellar pulsations. However, we observe a peak in the bisector velocity span periodogram at the same period as the one found in the radial velocity periodogram, which indicates a probable link between these radial velocity variations and the low amplitude lineshape variations which are of stellar origin. Long-period variations are not expected from this type of star to our knowledge. If a stellar origin (hence of new type) was to be confirmed for these long-period radial velocity variations, this would have several consequences on the search for planets around main-sequence stars, both in terms of observational strategy and data analysis. An alternative explanation for these variable radial velocities is the presence of at least one planet of a few Jupiter masses orbiting at less than 1 AU. (abridged)



rate research

Read More

(Abridged) Aims: Systematic surveys to search for exoplanets have been mostly dedicated to solar-type stars sofar. We developed in 2004 a method to extend such searches to earlier A-F type dwarfs and started spectroscopic surveys to search for planets and quantify the detection limit achievable when taking into account the stars properties and their actual levels of intrinsic variations. We give here the first results of our southern survey with HARPS. Results: 1) 64% of the 170 stars with enough data points are found to be variable. 20 are found to be binaries or candidate binaries (with stars or brown dwarfs). More than 80% or the latest type stars (once binaries are removed) are intrinsically variable at a 2 m/s precision level. Stars with earlier spectral type (B-V <= 0.2) are either variable or associated to levels of uncertainties comparable to the RV rms observed on variable stars of same B-V. 2) We have detected one long-period planetary system around an F6IV-V star. 3) We have quantified the jitter due to stellar activity and we show that taking into account this jitter in addition to the stellar parameters, it is still possible to detect planets with HARPS with periods of 3 days (resp. 10 days and 100 days) on 91% (resp. 83%, 61%) of them. We show that even the earliest spectral type stars are accessible to this type of search, provided they have a low vsini and low levels of activity. 4) Taking into account the present data, we compute the actually achieved detection limits for 107 targets and discuss the limits as a function of B-V. Given the data at hand, our survey is sensitive to short-period (few days) planets and to longer ones (100 days) at a lower extent (latest type stars). We derive first constrains on the presence of planets around A-F stars for these ranges of periods.
183 - Jeremy Bailey 2014
The last few years has seen a dramatic increase in the number of exoplanets known and in the range of methods for characterising their atmospheric properties. At the same time, new discoveries of increasingly cooler brown dwarfs have pushed down their temperature range which now extends down to Y-dwarfs of <300 K. Modelling of these atmospheres has required the development of new techniques to deal with the molecular chemistry and clouds in these objects. The atmospheres of brown dwarfs are relatively well understood, but some problems remain, in particular the behavior of clouds at the L/T transition. Observational data for exoplanet atmosphere characterization is largely limited to giant exoplanets that are hot because they are near to their star (hot Jupiters) or because they are young and still cooling. For these planets there is good evidence for the presence of CO and H2O absorptions in the IR. Sodium absorption is observed in a number of objects. Reflected light measurements show that some giant exoplanets are very dark, indicating a cloud free atmosphere. However, there is also good evidence for clouds and haze in some other planets. It is also well established that some highly irradiated planets have inflated radii, though the mechanism for this inflation is not yet clear. Some other issues in the composition and structure of giant exoplanet atmospheres such as the occurence of inverted temperature structures, the presence or absence of CO2 and CH4, and the occurrence of high C/O ratios are still the subject of investigation and debate.
158 - Kaspar von Braun 2017
In order to understand the exoplanet, you need to understand its parent star. Astrophysical parameters of extrasolar planets are directly and indirectly dependent on the properties of their respective host stars. These host stars are very frequently the only visible component in the systems. This book describes our work in the field of characterization of exoplanet host stars using interferometry to determine angular diameters, trigonometric parallax to determine physical radii, and SED fitting to determine effective temperatures and luminosities. The interferometry data are based on our decade-long survey using the CHARA Array. We describe our methods and give an update on the status of the field, including a table with the astrophysical properties of all stars with high-precision interferometric diameters out to 150 pc (status Nov 2016). In addition, we elaborate in more detail on a number of particularly significant or important exoplanet systems, particularly with respect to (1) insights gained from transiting exoplanets, (2) the determination of system habitable zones, and (3) the discrepancy between directly determined and model-based stellar radii. Finally, we discuss current and future work including the calibration of semi-empirical methods based on interferometric data.
Exoplanetary science has reached a historic moment. The James Webb Space Telescope will be capable of probing the atmospheres of rocky planets, and perhaps even search for biologically produced gases. However this is contingent on identifying suitable targets before the end of the mission. A race therefore, is on, to find transiting planets with the most favorable properties, in time for the launch. Here, we describe a realistic opportunity to discover extremely favorable targets - rocky planets transiting nearby brown dwarfs - using the Spitzer Space Telescope as a survey instrument. Harnessing the continuous time coverage and the exquisite precision of Spitzer in a 5,400 hour campaign monitoring nearby brown dwarfs, we will detect a handful of planetary systems with planets as small as Mars. The survey we envision is a logical extension of the immense progress that has been realized in the field of exoplanets and a natural outcome of the exploration of the solar neighborhood to map where the nearest habitable rocky planets are located (as advocated by the 2010 Decadal Survey). Our program represents an essential step towards the atmospheric characterization of terrestrial planets and carries the compelling promise of studying the concept of habitability beyond Earth-like conditions. In addition, our photometric monitoring will provide invaluable observations of a large sample of nearby brown dwarfs situated close to the M/L transition. This is why, we also advocate an immediate public release of the survey data, to guarantee rapid progress on the planet search and provide a treasure trove of data for brown dwarf science.
Aims: In the frame of the search for extrasolar planets and brown dwarfs around early-type stars, we present the results obtained for the F-type main-sequence star HD 60532 (F6V) with HARPS. Methods: Using 147 spectra obtained with HARPS at La Silla on a time baseline of two years, we study the radial velocities of this star. Results: HD 60532 radial velocities are periodically variable, and the variations have a Keplerian origin. This star is surrounded by a planetary system of two planets with minimum masses of 1 and 2.5 Mjup and orbital separations of 0.76 and 1.58 AU respectively. We also detect high-frequency, low-amplitude (10 m/s peak-to-peak) pulsations. Dynamical studies of the system point toward a possible 3:1 mean-motion resonance which should be confirmed within the next decade.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا