Do you want to publish a course? Click here

4C 02.27: what is inside a double-double radio quasar?

193   0   0.0 ( 0 )
 Added by Sandor Frey
 Publication date 2010
  fields Physics
and research's language is English
 Authors S. Frey




Ask ChatGPT about the research

Recently Jamrozy et al. (2009) identified 4C 02.27 (J0935+0204) as the first possible example of a double-double radio source which is optically identified with a quasar (i.e. not a galaxy), at the redshift of z=0.649. The overall projected angular size of the radio source reaches about 1.5, with a prominent core component in the centre. The two opposite pairs of radio lobes might indicate two periods of episodic activity. We report on our short exploratory 1.6-GHz Very Long Baseline Interferometry (VLBI) observations of the innermost radio structure of the quasar, conducted with the electronic European VLBI Network (e-EVN) on 2009 September 30. These revealed a milliarcsecond-scale compact source which is the base of the approaching one of the two symmetric relativistic jets currently supplying the hot spots in the inner pair of the arcsecond-scale radio lobes in 4C 02.27.



rate research

Read More

156 - M. Jamrozy 2009
One of the striking examples of episodic activity in active galactic nuclei are the double-double radio galaxies (DDRGs) with two pairs of oppositely-directed radio lobes from two different cycles of activity. We illustrate, using the DDRG J1453+3308 as an example, that observations over a wide range of frequencies using both the GMRT and the VLA can be used to determine the spectra of the inner and outer lobes, estimate their spectral ages, estimate the time scales of episodic activity, and examine any difference in the injection spectra in the two cycles of activity. Low-frequency GMRT observations also suggest that DDRGs and triple-double radio galaxies are rather rare.
Both uncorrelated (sequential) and correlated (nonsequential) processes contribute to the double ionization of the helium atom in strong laser pulses. The double ionization probability has a characteristic knee shape as a function of the intensity of the pulse. We investigate the phase-space dynamics of this system, specifically by finding the dynamical structures that regulate the ionization processes. The emerging picture complements the recollision scenario by clarifying the distinct roles played by the recolliding and core electrons. Our analysis leads to verifiable predictions of the intensities where qualitiative changes in ionization occur, leading to the hallmark knee shape.
We report the discovery of a double-double radio source (DDRS) J0028+0035. We observed it with LOFAR, GMRT, and the VLA. By combining our observational data with those from the literature, we gathered an appreciable set of radio flux density measurements covering the range from 74 MHz to 14 GHz. This enabled us to carry out an extensive review of physical properties of the source and its dynamical evolution analysis. In particular, we found that, while the age of the large-scale outer lobes is about 245 Myr, the renewal of the jet activity, which is directly responsible for the double-double structure, took place only about 3.6 Myr ago after about 11 Myr long period of quiescence. Another important property typical for DDRSs and also present here is that the injection spectral indices for the inner and the outer pair of lobes are similar. The jet powers in J0028+0035 are similar too. Both these circumstances support our inference that it is, in fact, a DDRS which was not recognized as such so far because of the presence of a coincident compact object close to the inner double so that the centre of J0028+0035 is apparently a triple.
Outflows of photoionized gas are commonly detected in the X-ray spectra of Seyfert 1 galaxies. However, the evidence for this phenomenon in broad line radio galaxies, which are analogous to Seyfert 1 galaxies in the radio-loud regime, has so far been scarce. Here, we present the analysis of the X-ray absorption in the radio-loud quasar 4C +74.26. With the aim of characterizing the kinetic and the ionization conditions of the absorbing material, we fitted jointly the XMM-Newton Reflection Grating Spectrometer (RGS) and the Chandra High Energy Transmission Grating Spectrometer (HETGS) spectra, which were taken 4 months apart. The intrinsic continuum flux did not vary significantly during this time lapse. The spectrum shows the absorption signatures (e.g., Fe-UTA, ion{O}{vii}, and ion{Ne}{vii}--ion{Ne}{x}) of a photoionized gas outflow ($N_{rm H} sim 3.5 times 10^{21} rm cm^{-2}$, $log xi sim 2.6$, $v_{rm out}sim 3600 , rm km , s^{-1}$) located at the redshift of source. We estimate that the gas is located outside the broad line region but within the boundaries of the putative torus. This ionized absorber is consistent with the X-ray counterpart of a polar scattering outflow reported in the optical band for this source. The kinetic luminosity carried by the outflow is insufficient to produce a significant feedback is this quasar. Finally, we show that the heavy soft X-ray absorption that was noticed in the past for this source arises mostly in the Galactic ISM.
80 - S. Nandi , D.J. Saikia , R. Roy 2019
In order to understand the possible mechanisms of recurrent jet activity in radio galaxies and quasars, which are still unclear, we have identified such sources with a large range of linear sizes (220 $-$ 917 kpc), and hence time scales of episodic activity. Here we present high-sensitivity 607-MHz Giant Metrewave Radio Telescope (GMRT) images of 21 possible double-double radio galaxies (DDRGs) identified from the FIRST survey to confirm their episodic nature. These GMRT observations show that none of the inner compact components suspected to be hot-spots of the inner doubles are cores having a flat radio spectrum, confirming the episodic nature of these radio sources. We have indentified a new DDRG with a candidate quasar, and have estimated the upper spectral age limits for eight sources which showed marginal evidence of steepening at higher frequencies. The estimated age limits (11 $-$ 52 Myr) are smaller than those of the large-sized ($sim$ 1 Mpc) DDRGs.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا