No Arabic abstract
Studying the composition of dust in the interstellar medium (ISM) is crucial in understanding the cycle of dust in our galaxy. The mid-infrared spectral signature of amorphous silicates, the most abundant dust species in the ISM, is studied in different lines-of-sight through the Galactic plane, thus probing different conditions in the ISM. We have analysed 10 spectra from the Spitzer archive, of which 6 lines-of-sight probe diffuse interstellar medium material and 4 probe molecular cloud material. The 9.7 um silicate absorption features in 7 of these spectra were studied in terms of their shape and strength. In addition, the shape of the 18 um silicate absorption features in 4 of the diffuse sightline spectra were analysed. The 9.7 um silicate absorption bands in the diffuse sightlines show a strikingly similar band shape. This is also the case for all but one of the 18 um silicate absorption bands observed in diffuse lines-of-sight. The 9.7 um bands in the 4 molecular sightlines show small variations in shape. These modest variations in the band shape are inconsistent with the interpretation of the large variations in {tau}_9.7/E(J-K) between diffuse and molecular sightlines in terms of silicate grain growth. Instead, we suggest that the large changes in {tau}_9.7 / E(J-K) must be due to changes in E(J-K).
The dusty torus plays a vital role in unifying active galactic nuclei (AGNs). However, the physical structure of the torus remains largely unclear. Here we present a systematical investigation of the torus mid-infrared (MIR) spectroscopic feature, i.e., the 9.7 um silicate line, of $175$ AGNs selected from the Swift/BAT Spectroscopic Survey (BASS). Our sample is constructed to ensure that each of the $175$ AGNs has Spizter/IRS MIR, optical, and X-ray spectroscopic coverage. Therefore, we can simultaneously measure the silicate strength, optical emission lines, and X-ray properties (e.g., the column density and the intrinsic X-ray luminosity). We show that, consistent with previous works, the silicate strength is weakly correlated with the hydrogen column density ($N_mathrm{H}^mathrm{X}$), albeit with large scatters. For X-ray unobscured AGNs, the silicate-strength-derived $V$-band extinction and the broad-H$alpha$-inferred one are both small; however, for X-ray obscured AGNs, the former is much larger than the latter. In addition, we find that the optical type 1 AGNs with strong X-ray absorption on average show significant silicate absorption, indicating that their X-ray absorption might not be caused by dust-free gas in the broad-line region. Our results suggest that the distribution and structure of the obscuring dusty torus are likely to be very complex. We test our results against the smooth and clumpy torus models and find evidence in favor of the clumpy torus model.
Recent submillimeter and far-infrared wavelength observations of absorption in the rotational ground-state lines of various simple molecules against distant Galactic continuum sources have opened the possibility of studying the chemistry of diffuse molecular clouds throughout the Milky Way. In order to calculate abundances, the column densities of molecular and atomic hydrogen, HI, must be known. We aim at determining the atomic hydrogen column densities for diffuse clouds located on the sight lines toward a sample of prominent high-mass star-forming regions that were intensely studied with the HIFI instrument onboard Herschel. Based on Jansky Very Large Array data, we employ the 21 cm HI absorption-line technique to construct profiles of the HI opacity versus radial velocity toward our target sources. These profiles are combined with lower resolution archival data of extended HI emission to calculate the HI column densities of the individual clouds along the sight lines. We employ Bayesian inference to estimate the uncertainties of the derived quantities. Our study delivers reliable estimates of the atomic hydrogen column density for a large number of diffuse molecular clouds at various Galactocentric distances. Together with column densities of molecular hydrogen derived from its surrogates observed with HIFI, the measurements can be used to characterize the clouds and investigate the dependence of their chemistry on the molecular fraction, for example.
We use UV measurements of interstellar CO towards nearby stars to calculate the density in the diffuse molecular clouds containing the molecules responsible for the observed absorption. Chemical models and recent calculations of the excitation rate coefficients indicate that the regions in which CO is found have hydrogen predominantly in molecular form. We carry out statistical equilibrium calculations using CO-H2 collision rates to solve for the H2 density in the observed sources without including effects of radiative trapping. We have assumed kinetic temperatures of 50 K and 100 K, finding this choice to make relatively little difference to the lowest transition. For the sources having T_ex(1-0) only, for which we could determine upper and lower density limits, we find <n(H2)> = 49 cm-3. While we can find a consistent density range for a good fraction of the sources having either two or three values of the excitation temperature, there is a suggestion that the higher-J transitions are sampling clouds or regions within diffuse molecular cloud material that have higher densities than the material sampled by the J = 1-0 transition. The assumed kinetic temperature and derived H2 density are anticorrelated when the J = 2-1 transition data, the J = 3-2 transition data, or both are included. For sources with either two or three values of the excitation temperature, we find average values of the midpoint of the density range that is consistent with all of the observations equal to 68 cm-3 for T_k = 100 K and 92 cm-3 for T_k = 50 K. The data for this set of sources imply that diffuse molecular clouds are characterized by an average thermal pressure between 4600 and 6800 Kcm-3.
We present the first results of an ALMA spectral survey of strong absorption lines for common interstellar species in the z=0.89 molecular absorber toward the lensed blazar PKS1830-211. The dataset brings essential information on the structure and composition of the absorbing gas in the foreground galaxy. In particular, we find absorption over large velocity intervals (gtrsim 100 km/s) toward both lensed images of the blazar. This suggests either that the galaxy inclination is intermediate and that we sample velocity gradients or streaming motions in the disk plane, that the molecular gas has a large vertical distribution or extraplanar components, or that the absorber is not a simple spiral galaxy but might be a merger system. The number of detected species is now reaching a total of 42 different species plus 14 different rare isotopologues toward the SW image, and 14 species toward the NE line-of-sight. The abundances of CH, H2O, HCO+, HCN, and NH3 relative to H2 are found to be comparable to those in the Galactic diffuse medium. Of all the lines detected so far toward PKS1830-211, the ground-state line of ortho-water has the deepest absorption. We argue that ground-state lines of water have the best potential for detecting diffuse molecular gas in absorption at high redshift.
The 1-50 GHz GBT PRIMOS data contains ~50 molecular absorption lines observed in diffuse and translucent clouds located in the Galactic Center, Bar, and spiral arms in the line-of-sight to Sgr B2(N). We measure the column densities and estimate abundances, relative to H2, of 11 molecules and additional isotopologues. We use absorption by optically thin transitions of c-C3H2 to estimate the N(H2), and argue that this method is preferable to more commonly used methods. We discuss the kinematic structure and abundance patterns of small molecules including the sulfur-bearing species CS, SO, CCS, H2CS, and HCS+; oxygen-bearing molecules OH, SiO, and H2CO; and simple hydrocarbon molecules c-C3H2, l-C3H, and l-C3H+. We discuss the implications of the observed chemistry for the structure of the gas and dust in the ISM. Highlighted results include the following. First, whereas gas in the disk has a molecular hydrogen fraction of 0.65, clouds on the outer edge of the Galactic Bar and in or near the Galactic Center have molecular fractions of 0.85 and >0.9, respectively. Second, we observe trends in isotope ratios with Galactocentric distance; while carbon and silicon show enhancement of the rare isotopes at low Galactocentric distances, sulfur exhibits no trend with Galactocentric distance; the ratio of c-C3H2/c-H13CCCH provides a good estimate of the 12C:13C ratio, whereas H2CO/H2^13CO exhibits fractionation. Third, we report the presence of l-C3H+ in diffuse clouds for the first time. Finally, we suggest that CS has an enhanced abundance within higher density clumps of material in the disk, and therefore may be diagnostic of cloud conditions. If this holds, the diffuse clouds in the Galactic disk contain multiple embedded hyperdensities in a clumpy structure, and the density profile is not a simple function of A_V.