No Arabic abstract
We propose a system of equations that defines Weierstrass--Jacobis eta- and theta-constant series in a differentially closed way. This system is shown to have a direct relationship to a little-known dynamical system obtained by Jacobi. The classically known differential equations by Darboux--Halphen, Chazy, and Ramanujan are the differential consequences or reductions of these systems. The proposed system is shown to admit the Lagrangian, Hamiltonian, and Nambu formulations. We explicitly construct a pencil of nonlinear Poisson brackets and complete set of involutive conserved quantities. As byproducts of the theory, we exemplify conserved quantities for the Ramamani dynamical system and quadratic system of Halphen--Brioschi.
This paper concerns the smoothness of Tauberian constants of maximal operators in the discrete and ergodic settings. In particular, we define the discrete strong maximal operator $tilde{M}_S$ on $mathbb{Z}^n$ by [ tilde{M}_S f(m) := sup_{0 in R subset mathbb{R}^n}frac{1}{#(R cap mathbb{Z}^n)}sum_{ jin R cap mathbb{Z}^n} |f(m+j)|,qquad min mathbb{Z}^n, ] where the supremum is taken over all open rectangles in $mathbb{R}^n$ containing the origin whose sides are parallel to the coordinate axes. We show that the associated Tauberian constant $tilde{C}_S(alpha)$, defined by [ tilde{C}_S(alpha) := sup_{substack{E subset mathbb{Z}^n 0 < #E < infty} } frac{1}{#E}#{m in mathbb{Z}^n:, tilde{M}_Schi_E(m) > alpha}, ] is Holder continuous of order $1/n$. Moreover, letting $U_1, ldots, U_n$ denote a non-periodic collection of commuting invertible transformations on the non-atomic probability space $(Omega, Sigma, mu)$ we define the associated maximal operator $M_S^ast$ by [ M^ast_{S}f(omega) := sup_{0 in R subset mathbb{R}^n}frac{1}{#(R cap mathbb{Z}^n)}sum_{(j_1, ldots, j_n)in R}|f(U_1^{j_1}cdots U_n^{j_n}omega)|,qquad omegainOmega. ] Then the corresponding Tauberian constant $C^ast_S(alpha)$, defined by [ C^ast_S(alpha) := sup_{substack{E subset Omega mu(E) > 0}} frac{1}{mu(E)}mu({omega in Omega :, M^ast_Schi_E(omega) > alpha}), ] also satisfies $C^ast_S in C^{1/n}(0,1).$ We will also see that, in the case $n=1$, that is in the case of a single invertible, measure preserving transformation, the smoothness of the corresponding Tauberian constant is characterized by the operator enabling arbitrarily long orbits of sets of positive measure.
Let $[A]: Y=AY$ with $Ain mathrm{M}_n (k)$ be a differential linear system. We say that a matrix $Rin {cal M}_{n}(bar{k})$ is a {em reduced form} of $[A]$ if $Rin mathfrak{g}(bar{k})$ and there exists $Pin GL_n (bar{k})$ such that $R=P^{-1}(AP-P)in mathfrak{g}(bar{k})$. Such a form is often the sparsest possible attainable through gauge transformations without introducing new transcendants. In this article, we discuss how to compute reduced forms of some symplectic differential systems, arising as variational equations of hamiltonian systems. We use this to give an effective form of the Morales-Ramis theorem on (non)-integrability of Hamiltonian systems.
We formulate general principles of building hypergeometric type series from the Jacobi theta functions that generalize the plain and basic hypergeometric series. Single and multivariable elliptic hypergeometric series are considered in detail. A characterization theorem for a single variable totally elliptic hypergeometric series is proved.
We define a general class of (multiple) integrals of hypergeometric type associated with the Jacobi theta functions. These integrals are related to theta hypergeometric series through the residue calculus. In the one variable case, we get theta function extensions of the Meijer function. A number of multiple generalizations of the elliptic beta integral [S2] associated with the root systems $A_n$ and $C_n$ is described. Some of the $C_n$-examples were proposed earlier by van Diejen and the author, but other integrals are new. An example of the biorthogonality relations associated with the elliptic beta integrals is considered in detail.
Analyzing qualitative behaviors of biochemical reactions using its associated network structure has proven useful in diverse branches of biology. As an extension of our previous work, we introduce a graph-based framework to calculate steady state solutions of biochemical reaction networks with synthesis and degradation. Our approach is based on a labeled directed graph $G$ and the associated system of linear non-homogeneous differential equations with first order degradation and zeroth order synthesis. We also present a theorem which provides necessary and sufficient conditions for the dynamics to engender a unique stable steady state. Although the dynamics are linear, one can apply this framework to nonlinear systems by encoding nonlinearity into the edge labels. We answer open question from our previous work concerning the non-positiveness of the elements in the inverse of a perturbed Laplacian matrix. Moreover, we provide a graph theoretical framework for the computation of the inverse of a such matrix. This also completes our previous framework and makes it purely graph theoretical. Lately, we demonstrate the utility of this framework by applying it to a mathematical model of insulin secretion through ion channels and glucose metabolism in pancreatic $beta$-cells.