Do you want to publish a course? Click here

Site-specific Quantification of Bone Quality using Highly Nonlinear Solitary Waves

509   0   0.0 ( 0 )
 Added by Jinkyu Yang
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

Osteoporosis is a well recognized problem affecting millions of individuals worldwide. Consequently, the need to effectively, efficiently, and affordably diagnose and identify those at risk is essential; moreover, site-specific assessment of bone quality is necessary, not only in the process of risk assessment, but may also be desirable for other applications. The present study evaluated a new one-dimensional granular crystal sensor, composed of a tightly packed chain of beads under Hertzian contact interaction, representing the most suitable fundamental component for solitary wave generation and propagation. First, the sensitivity of the novel sensor was tested using densities of rigid polyurethane foam, representing clinical bone quality ranging from healthy, to severely osteoporotic. Once the relationship between the signal response and known densities was established, the sensor was used to measure several sites located in the proximal femur of ten human cadaveric specimens. The accuracy of the model was then further investigated, using measurements of bone quality from the same cadaveric specimens, independently, using DEXA. The results indicate not only that the novel technique is capable of detecting differences in bone quality, but that the ability to measure site-specific properties without exposure to radiation, has the potential to be further developed for clinical applications.



rate research

Read More

We study the interaction of highly nonlinear solitary waves in granular crystals, with an adjacent linear elastic medium. We investigate the effects of interface dynamics on the reflection of incident waves and on the formation of primary and secondary reflected waves. Experimental tests are performed to correlate the linear medium geometry, materials, and mass with the formation and propagation of the reflected waves. We compare the experimental results with theoretical analysis based on the long-wavelength approximation and with numerical predictions obtained from discrete particle models. Studying variations of the reflected waves velocity and amplitude, we describe how the propagation of primary and secondary reflected waves responds sensitively to the states of the adjacent linear media. Experimental results are found to be in agreement with the theoretical analysis and numerical simulation. This preliminary study establishes the foundation for utilizing reflected solitary waves as novel information carriers in nondestructive evaluation of elastic material systems.
Osteopenia is indicated as a common phenomenon in patients who have scoliosis. Quantitative ultrasound (QUS) has been used to assess skeletal status for decades, and recently ultrasound imaging using reflection signals from vertebra were as well applied to measure spinal curvatures on children with scoliosis. The objectives of this study are to develop a new method which can robustly extract a parameter from ultrasound spinal data for estimating bone quality of scoliotic patients and to investigate the potential for the parameter on predicting curve progression. The frequency amplitude index (FAI) was calculated based on the spectrum of the original radio frequency (RF) signals reflected from the tissue-vertebra interface. The correlation between FAI and reflection coefficient was validated using decalcified bovine bone samples in vitro, and the FAIs of scoliotic subjects were investigated in vivo referring to BMI, Cobb angles and curve progression status. The results showed that the intra-rater measures were highly reliable between different trials (ICC=0.997). The FAI value was strongly correlated to the reflection coefficient of bone tissue ($R^{2}=0.824$), and the lower FAI indicated the higher risk of curve progression for the non-mild cases. This preliminary study reported that the FAI method can provide a feasible and promising approach to assess bone quality and monitor curve progression of the patients who have AIS.
142 - Zhiwu Lin 2008
We consider linear instability of solitary waves of several classes of dispersive long wave models. They include generalizations of KDV, BBM, regularized Boussinesq equations, with general dispersive operators and nonlinear terms. We obtain criteria for the existence of exponentially growing solutions to the linearized problem. The novelty is that we dealt with models with nonlocal dispersive terms, for which the spectra problem is out of reach by the Evans function technique. For the proof, we reduce the linearized problem to study a family of nonlocal operators, which are closely related to properties of solitary waves. A continuation argument with a moving kernel formula are used to find the instability criteria. Recently, these techniques have also been extended to study instability of periodic waves and to the full water wave problem.
Samples of uterine leiomyomatis and normal tissues taken from patients after surgery were investigated using the Positron Annihilation Lifetime Spectroscopy (PALS). Significant differences in all PALS parameters between normal and diseased tissues were observed. For all studied patients, it was found that the values of the free annihilation and ortho-positronium lifetime are larger for the tumorous tissues than for the healthy ones. For most of the patients, the intensity of the free annihilation and ortho-positronium annihilation was smaller for the tumorous than for the healthy tissues. For the first time, in this kind of studies, the $3gamma$ fraction of positron annihilation was determined to describe changes in the tissue porosity during morphologic alteration.
91 - Ting Zhang , Lei Wang , Jing Ning 2021
The nuclides inhaled during nuclear accidents usually cause internal contamination of the lungs with low activity. Although a parallel-hole imaging system, which is widely used in medical gamma cameras, has a high resolution and good image quality, owing to its extremely low detection efficiency, it remains difficult to obtain images of inhaled lung contamination. In this study, the Monte Carlo method was used to study the internal lung contamination imaging using the MPA-MURA coded-aperture collimator. The imaging system consisted of an adult male lung model, with a mosaicked, pattern-centered, and anti-symmetric MURA coded-aperture collimator model and a CsI(Tl) detector model. The MLEM decoding algorithm was used to reconstruct the internal contamination image, and the complementary imaging method was used to reduce the number of artifacts. The full width at half maximum of the I-131 point source image reconstructed by the mosaicked, pattern-centered, and anti-symmetric Modified uniformly redundant array (MPA-MURA) coded-aperture imaging reached 2.51 mm, and the signal-to-noise ratio of the simplified respiratory tract source (I-131) image reconstructed through MPA-MURA coded-aperture imaging was 3.98 dB. Although the spatial resolution of MPA-MURA coded aperture imaging is not as good as that of parallel-hole imaging, the detection efficiency of PMA-MURA coded-aperture imaging is two orders of magnitude higher than that of parallel hole collimator imaging. Considering the low activity level of internal lung contamination caused by nuclear accidents, PMA-MURA coded-aperture imaging has significant potential for the development of lung contamination imaging.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا