Do you want to publish a course? Click here

Asymmetric Gepner Models III. B-L Lifting

168   0   0.0 ( 0 )
 Added by Bert Schellekens
 Publication date 2010
  fields
and research's language is English




Ask ChatGPT about the research

In the same spirit as heterotic weight lifting, B-L lifting is a way of replacing the superfluous and ubiquitous U(1)_{B-L} with something else with the same modular properties, but different conformal weights and ground state dimensions. This method works in principle for all variants of (2,2) constructions, such as orbifolds, Calabi-Yau manifolds, free bosons and fermions and Gepner models, since it only modifies the universal SO(10) x E_8 part of the CFT. However, it can only yield chiral spectra if the ``internal sector of the theory provides a simple current of order 5. Here we apply this new method to Gepner models. Including exceptional invariants, 86 of them have the required order 5 simple current, and 69 of these yield chiral spectra. Three family spectra occur abundantly.



rate research

Read More

A systematic study of lifted Gepner models is presented. Lifted Gepner models are obtained from standard Gepner models by replacing one of the N=2 building blocks and the $E_8$ factor by a modular isomorphic $N=0$ model on the bosonic side of the heterotic string. The main result is that after this change three family models occur abundantly, in sharp contrast to ordinary Gepner models. In particular, more than 250 new and unrelated moduli spaces of three family models are identified. We discuss the occurrence of fractionally charged particles in these spectra.
We reconsider a class of heterotic string theories studied in 1989, based on tensor products of N=2 minimal models with asymmetric simple current invariants. We extend this analysis from (2,2) and (1,2) spectra to (0,2) spectra with SO(10) broken to the Standard Model. In the latter case the spectrum must contain fractionally charged particles. We find that in nearly all cases at least some of them are massless. However, we identify a large subclass where the fractional charges are at worst half-integer, and often vector-like. The number of families is very often reduced in comparison to the 1989 results, but there are no new tensor combinations yielding three families. All tensor combinations turn out to fall into two classes: those where the number of families is always divisible by three, and those where it is never divisible by three. We find an empirical rule to determine the class, which appears to extend beyond minimal N=2 tensor products. We observe that distributions of physical quantities such as the number of families, singlets and mirrors have an interesting tendency towards smaller values as the gauge groups approaches the Standard Model. We compare our results with an analogous class of free fermionic models. This displays similar features, but with less resolution.Finally we present a complete scan of the three family models based on the triply-exceptional combination (1,16*,16*,16*) identified originally by Gepner. We find 1220 distinct three family spectra in this case, forming 610 mirror pairs. About half of them have the gauge group SU(3) x SU(2)_L x SU(2)_R x U(1)^5, the theoretical minimum, and many others are trinification models.
162 - M. Maio , A.N. Schellekens 2011
We study orbifolds by permutations of two identical N=2 minimal models within the Gepner construction of four dimensional heterotic strings. This is done using the new N=2 supersymmetric permutation orbifold building blocks we have recently developed. We compare our results with the old method of modding out the full string partition function. The overlap between these two approaches is surprisingly small, but whenever a comparison can be made we find complete agreement. The use of permutation building blocks allows us to use the complete arsenal of simple current techniques that is available for standard Gepner models, vastly extending what could previously be done for permutation orbifolds. In particular, we consider (0,2) models, breaking of SO(10) to subgroups, weight-lifting for the minimal models and B-L lifting. Some previously observed phenomena, for example concerning family number quantization, extend to this new class as well, and in the lifted models three family models occur with abundance comparable to two or four.
The present matter content of our universe may be governed by a $U(1)_{B-L}$ symmetry -- the simplest gauge completion of the seesaw mechanism which produces small neutrino masses. The matter parity results as a residual gauge symmetry, implying dark matter stability. The Higgs field that breaks the $B-L$ charge inflates the early universe successfully and then decays to right-handed neutrinos, which reheats the universe and generates both normal matter and dark matter manifestly.
We study non-compact Gepner models that preserve sixteen or eight supercharges in type II string theories. In particular, we develop an orbifolded Landau-Ginzburg description of these models analogous to the Landau-Ginzburg formulation of compact Gepner models. The Landau-Ginzburg description provides an easy and direct access to the geometry of the singularity associated to the non-compact Gepner models. Using these tools, we are able to give an intuitive account of the chiral rings of the models, and of the massless moduli in particular. By studying orbifolds of the singular linear dilaton models, we describe mirror pairs of non-compact Gepner models by suitably adapting the Greene-Plesser construction of mirror pairs for the compact case. For particular models, we take a large level, low curvature limit in which we can analyze corrections to a flat space orbifold approximation of the non-compact Gepner models. This gives rise to a counting of moduli which differs from the toric counting in a subtle way.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا