Do you want to publish a course? Click here

The old environment of the faint calcium-rich supernova SN 2005cz

344   0   0.0 ( 0 )
 Added by Hagai B. Perets
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

The supernova SN 2005cz has recently attracted some attention, due to the fact that it was spectroscopically similar to type Ib supernovae (SNe), a class that is presumed to result from core-collapse of massive stars, yet it occurred in an elliptical galaxy, where one expects very few massive stars to exist. Two explanations for this remarkable event were put forward. Perets et al. (2010) associate SN 2005cz with the class of Ca-rich, faint SNe Ib, which likely result from old double-white-dwarf systems with a He-rich secondary. On the other hand, Kawabata et al. (2010) suggest that SN 2005cz is indeed a core-collapse event (in a binary system), albeit of a star at the lower end of the mass range, 10-12 M_Sun. The existence of this star in its elliptical host is explained as resulting from low-level star formation (SF) activity in that galaxy. Here we present extensive observations of the location of SN 2005cz, sensitive to a variety of SF tracers, including optical spectroscopy, H_alpha emission, UV emission and HST photometry. We show that NGC 4589, the host galaxy of SN 2005cz, does not show any signatures of a young stellar population or recent SF activity either close to or far from the location of SN 2005cz.



rate research

Read More

_NGC 4589, a bright E2 merger-remnant galaxy, hosts the peculiar fast and faint calcium-rich Type Ib supernova (SN) SN 2005cz. The progenitor of Ca-rich SNe Ib has been controversial: it could be a) a young massive star with 6-12 M$odot$ in a binary system, or b) an old low-mass star in a binary system that was kicked out from the galaxy center. Moreover, previous distance estimates for this galaxy have shown a large spread, ranging from 20 Mpc to 60 Mpc. Thus, using archival $Hubble$ $Space$ $Telescope$/ACS $F435W$, $F555W$, and $F814W$ images, we search for star clusters in NGC 4589 in order to help resolve these issues. We find a small population of young star clusters with $25<Vleq27$ ($-7.1<M_Vleq-5.1$) mag and age $< 1$ Gyr in the central region at $R<0.5$ ($<3.8$ kpc), thus supporting the massive-star progenitor scenario for SN 2005cz. In addition to young star clusters, we also find a large population of old globular clusters. In contrast to previous results in the literature, we find that the color distribution of the globular clusters is clearly bimodal. The turnover (Vega) magnitude in the $V$-band luminosity functions of the blue (metal-poor) globular clusters is determined to be $V_0{(rm max)}=24.40pm0.10$ mag. We derive the total number of globular clusters, $N_{rm GC} =640pm50$, and the specific frequency, $S_N =1.7pm0.2$. Adopting a calibration for the metal-poor globular clusters, $M_V({rm max})=-7.66pm0.14$ mag, we derive a distance to this galaxy: $(m-M)_0=32.06pm0.10({rm ran})pm0.15({rm sys})$ ($d=25.8pm2.2$ Mpc).
We present optical and near-infrared observations of SN~Ib~2019ehk. We show that it evolved to a Ca-rich transient according to its spectral properties and evolution in late phases. It, however, shows a few distinguishable properties from the canonical Ca-rich transients: a short-duration first peak in the light curve, high peak luminosity, and association with a star-forming environment. Indeed, some of these features are shared with iPTF14gqr and iPTF16hgs, which are candidates for a special class of core-collapse SNe (CCSNe): the so-called ultra-stripped envelope SNe, i.e., a relatively low-mass He (or C+O) star explosion in a binary as a precursor of double neutron star binaries. The estimated ejecta mass ($0.43 M_odot$) and explosion energy ($1.7 times 10^{50} $~erg) are consistent with this scenario. The analysis of the first peak suggests existence of dense circumstellar material in the vicinity of the progenitor, implying a CCSN origin. Based on these analyses, we suggest SN 2019ehk is another candidate for an ultra-stripped envelope SN. These ultra-stripped envelope SN candidates seem to form a subpopulation among Ca-rich transients, associated with young population. We propose that the key to distinguishing this population is the early first peak in their light curves.
We present observations and modeling of SN 2016hnk, a Ca-rich supernova (SN) that is consistent with being the result of a He-shell double-detonation explosion of a C/O white dwarf. We find that SN 2016hnk is intrinsically red relative to typical thermonuclear SNe and has a relatively low peak luminosity ($M_B = -15.4$ mag), setting it apart from low-luminosity Type Ia supernovae (SNe Ia). SN 2016hnk has a fast-rising light curve that is consistent with other Ca-rich transients ($t_r = 15$ d). We determine that SN 2016hnk produced $0.03 pm 0.01 M_{odot}$ of ${}^{56}textrm{Ni}$ and $0.9 pm 0.3 M_{odot}$ of ejecta. The photospheric spectra show strong, high-velocity Ca II absorption and significant line blanketing at $lambda < 5000$ Angstroms, making it distinct from typical (SN 2005E-like) Ca-rich SNe. SN 2016hnk is remarkably similar to SN 2018byg, which was modeled as a He-shell double-detonation explosion. We demonstrate that the spectra and light curves of SN 2016hnk are well modeled by the detonation of a $0.02 M_{odot}$ helium shell on the surface of a $0.85 M_{odot}$ C/O white dwarf. This analysis highlights the second observed case of a He-shell double-detonation and suggests a specific thermonuclear explosion that is physically distinct from SNe that are defined simply by their low luminosities and strong [Ca II] emission.
48 - C. Frohmaier 2018
We present a measurement of the volumetric rate of `calcium-rich optical transients in the local universe, using a sample of three events from the Palomar Transient Factory (PTF). This measurement builds on a detailed study of the PTF transient detection efficiencies, and uses a Monte Carlo simulation of the PTF survey. We measure the volumetric rate of calcium-rich transients to be higher than previous estimates: $1.21^{+1.13}_{-0.39}times10^{-5}$ events yr$^{-1}$ Mpc$^{-3}$. This is equivalent to 33-94% of the local volumetric type Ia supernova rate. This calcium-rich transient rate is sufficient to reproduce the observed calcium abundances in galaxy clusters, assuming an asymptotic calcium yield per calcium-rich event of ~0.05$mathrm{M}_{odot}$. We also study the PTF detection efficiency of these transients as a function of position within their candidate host galaxies. We confirm as a real physical effect previous results that suggest calcium-rich transients prefer large physical offsets from their host galaxies.
We present $textit{Hubble Space Telescope}$ imaging of the Calcium-rich supernova (SN) 2019ehk at 276 - 389 days after explosion. These observations represent the latest photometric measurements of a Calcium-rich transient to date and allows for the first opportunity to analyze the late-time evolution of an object in this observational SN class. We find that the late-time bolometric light curve of SN 2019ehk can be described predominantly through the radioactive decay of ${}^{56}textrm{Co}$ for which we derive a mass of $M({}^{56}textrm{Co}) = (2.8 pm 0.1) times 10^{-2}$$rm{M}_odot$. Furthermore, the rate of decline in bolometric luminosity requires the leakage of $gamma$-rays on timescale $t_{gamma} = 53.9 pm 1.30$ days, but we find no statistical evidence for incomplete positron trapping in the SN ejecta. While our observations cannot constrain the exact masses of other radioactive isotopes synthesized in SN 2019ehk, we estimate a mass ratio limit of $M({}^{57}textrm{Co}) / M({}^{56}textrm{Co}) leq 0.030$. This limit is consistent with the explosive nucleosynthesis produced in the merger of low-mass white dwarfs, which is one of the favored progenitor scenarios in early-time studies of SN 2019ehk.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا