Do you want to publish a course? Click here

Element abundances in X-ray emitting plasmas in stars

250   0   0.0 ( 0 )
 Added by Paola Testa
 Publication date 2010
  fields Physics
and research's language is English
 Authors Paola Testa




Ask ChatGPT about the research

Studies of element abundances in stars are of fundamental interest for their impact in a wide astrophysical context, from our understanding of galactic chemistry and its evolution, to their effect on models of stellar interiors, to the influence of the composition of material in young stellar environments on the planet formation process. We review recent results of studies of abundance properties of X-ray emitting plasmas in stars, ranging from the corona of the Sun and other solar-like stars, to pre-main sequence low-mass stars, and to early-type stars. We discuss the status of our understanding of abundance patterns in stellar X-ray plasmas, and recent advances made possible by accurate diagnostics now accessible thanks to the high resolution X-ray spectroscopy with Chandra and XMM-Newton.



rate research

Read More

X-ray observations of protostellar jets show evidence of strong shocks heating the plasma up to temperatures of a few million degrees. In some cases, the shocked features appear to be stationary. They are interpreted as shock diamonds. We aim at investigating the physics that guides the formation of X-ray emitting stationary shocks in protostellar jets, the role of the magnetic field in determining the location, stability, and detectability in X-rays of these shocks, and the physical properties of the shocked plasma. We performed a set of 2.5-dimensional magnetohydrodynamic numerical simulations modelling supersonic jets ramming into a magnetized medium and explored different configurations of the magnetic field. The model takes into account the most relevant physical effects, namely thermal conduction and radiative losses. We compared the model results with observations, via the emission measure and the X-ray luminosity synthesized from the simulations. Our model explains the formation of X-ray emitting stationary shocks in a natural way. The magnetic field collimates the plasma at the base of the jet and forms there a magnetic nozzle. After an initial transient, the nozzle leads to the formation of a shock diamond at its exit which is stationary over the time covered by the simulations (~ 40 - 60 yr; comparable with time scales of the observations). The shock generates a point-like X-ray source located close to the base of the jet with luminosity comparable with that inferred from X-ray observations of protostellar jets. For the range of parameters explored, the evolution of the post-shock plasma is dominated by the radiative cooling, whereas the thermal conduction slightly affects the structure of the shock.
We have obtained new detailed abundances of the Fe-group elements Sc through Zn (Z=21-30) in three very metal-poor ([Fe/H] $approx -3$) stars: BD 03 740, BD -13 3442 and CD -33 1173. High-resolution ultraviolet HST/STIS spectra in the wavelength range 2300-3050AA were gathered, and complemented by an assortment of optical echelle spectra. The analysis featured recent laboratory atomic data for number of neutral and ionized species for all Fe-group elements except Cu and Zn. A detailed examination of scandium, titanium, and vanadium abundances in large-sample spectroscopic surveys indicates that they are positively correlated in stars with [Fe/H]<-$2. The abundances of these elements in BD 03 740, BD -13 3442 and CD -33 1173 and HD 84937. (studied in a previous paper of this series) are in accord with these trends and lie at the high end of the correlations. Six elements have detectable neutral and ionized features, and generally their abundances are in reasonable agreement. For Cr we find only minimal abundance disagreement between the neutral (mean of [Cri/Fe]=+0.01) and ionized species (mean of [Crii/Fe]=+0.08), unlike most studies in the past. The prominent exception is Co, for which the neutral species indicates a significant overabundance (mean of [Co/H]=-2.53), while no such enhancement is seen for the ionized species (mean of [Coii/H]=-2.93). These new stellar abundances, especially the correlations among Sc, Ti, and V, suggest that models of element production in early high-mass metal-poor stars should be revisited.
The light elements, Li, Be, and B, provide tracers for many aspects of astronomy including stellar structure, Galactic evolution, and cosmology. We have taken spectra of Be in 117 metal-poor stars ranging in metallicity from [Fe/H] = -0.5 to -3.5 with Keck I + HIRES at a resolution of 42,000 and signal-to-noise ratios of near 100. We have determined the stellar parameters spectroscopically from lines of Fe I, Fe II, Ti I and Ti II. The abundances of Be and O were derived by spectrum synthesis techniques, while abundances of Fe, Ti, and Mg were found from many spectral line measurements. There is a linear relationship between [Fe/H] and A(Be) with a slope of +0.88 +-0.03 over three orders of magnitude in [Fe/H]. We fit the relationship between A(Be) and [O/H] with both a single slope and with two slopes. The relationship between [Fe/H] and [O/H] seems robustly linear and we conclude that the slope change in Be vs. O is due to the Be abundance. Although Be is a by-product of CNO, we have used Ti and Mg abundances as alpha-element surrogates for O in part because O abundances are rather sensitive to both stellar temperature and surface gravity. We find that A(Be) tracks [Ti/H] very well with a slope of 1.00 +-0.04. It also tracks [Mg/H] very well with a slope of 0.88 +-0.03. We find that there are distinct differences in the relationships of A(Be) and [Fe/H] and of A(Be) and [O/H] for our dissipative stars and our accretive stars. We suggest that the Be in the dissipative stars was primarily formed by GCR spallation and Be in the accretive stars was formed in the vicinity of SN II.
159 - N. C. Sterling 2020
Nebular spectroscopy is a valuable tool for assessing the production of heavy elements by slow neutron(n)-capture nucleosynthesis (the s-process). Several transitions of n-capture elements have been identified in planetary nebulae (PNe) in the last few years, with the aid of sensitive high-resolution near-infrared spectrometers. Combined with optical spectroscopy, the newly discovered near-infrared lines enable more accurate abundance determinations than previously possible, and provide access to elements that had not previously been studied in PNe or their progenitors. Neutron-capture elements have also been detected in PNe in the Sagittarius Dwarf galaxy and in the Magellanic Clouds. In this brief review, I discuss developments in observational studies of s-process enrichments in PNe, with an emphasis on the last five years, and note some open questions and preliminary trends.
We have obtained [Mg/Fe] measurements for 76.3% of the stars in the MILES spectral library used for understanding stellar atmospheres and stellar populations in galaxies and star clusters. These abundance ratios were obtained through (1) a compilation of values from the literature using abundances from high-resolution spectroscopic studies and (2) a robust spectroscopic analysis using the MILES mid-resolution optical spectra. All the [Mg/Fe] values were carefully calibrated to a single uniform scale, by using an extensive control sample with results from high-resolution spectra. The small average uncertainties in the calibrated [Mg/Fe] values (respectively 0.09 and 0.12 dex with methods (1) and (2)) and the good coverage of the stars with [Mg/Fe] over stellar atmospheric parameter space of the library will permit the building of new simple stellar populations (SSPs) with empirical $alpha$-enhancements. These will be available for a range of [Mg/Fe], including both sub-solar and super-solar values, and for several metallicities and ages. These models will open up new prospects for testing and applications of evolutionary stellar population synthesis.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا