No Arabic abstract
Photometric variability of chemically peculiar (CP) stars of the upper main sequence is closely connected to their local stellar magnetic field and their rotational period. Long term investigations, as presented here, help us to identify possible stellar cycles (as in the Sun). Furthermore, these data provide a basis for detailed surface mapping techniques. Photoelectric Stroemgren uvby time series for 27 CP stars within the boundaries of open clusters are presented. In addition, Hipparcos photometric data (from 1989 to 1993) are used for our analysis. Our observations cover a time period of about six years (1986 to 1992) with typically fifteen measurements for each objects. These observations help us to determine the rotational periods of these objects. A standard reduction procedure was applied to the data. When possible, we merged our data sets with already published ones to obtain a more significant result. A detailed time series analysis was performed, involving five different methods to minimize spurious detections. We established, for the first time, variability for fourteen CP stars. For additional two stars, a merging of already published data sets, resulted in more precise periods, whereas for six objects, the published periods could be confirmed. Last, but not least, no significant variations were found for five stars. Apart from six stars, all targets seem to be members of their host open clusters.
$UBVRI$ photometry of the five open clusters Czernik 4, Berkeley 7, NGC 2236, NGC 7226 and King 12 has been carried out using ARIES 104 cm telescope, Nainital. Fundamental cluster parameters such as foreground reddening $E(B-V)$, distance, and age have been derived by means of the observed two colour and colour-magnitude diagrams, coupled to comparisons with theoretical models. $E(B-V)$ values range from 0.55 to 0.74 mag, while ages derived for these clusters range from $sim$10 to $sim$500 Myr. We have also studied the spatial structure, mass function and mass segregation effects. The present study shows that evaporation of low mass stars from the halo of the clusters increases as they evolve.
We report the discovery of 19 variable stars and two blue-stragglers in the field of the open cluster NGC6866. Three of the variable stars we classify as delta Sct, two, as gamma Dor, four, as WUMa, two, as ellipsoidal variables, and one, as an eclipsing binary. Seven stars show irregular variability. Two of the pulsators, a delta Sct star NGC 6866-29 and a gamma Dor star NGC6866-21, are multiperiodic. From an analysis of proper motions, we conclude that the delta Sct stars, one of the gamma Dor stars and both blue-stragglers are very probable members of the cluster. The position on the color-magnitude diagram of seven other variables suggests that they also belong to the cluster. The eclipsing binary, which we discover to be a new high-velocity star, and the seven irregular variables are non-members. Then, we discuss in detail the age and metallicity of open clusters that host gamma Dor stars and we show that none of these parameters is correlated with the number of gamma Dor stars in cluster.
In this paper we describe the photometric and spectroscopic properties of multiple populations in seven northern globular clusters. In this study we employ precise ground based photometry from the private collection of Stetson, space photometry from the Hubble Space Telescope, literature abundances of Na and O, and APOGEE survey abundances for Mg, Al, C, and N. Multiple populations are identified by their position in the CU,B,I -V pseudo-CMD and confirmed with their chemical composition determined using abundances. We confirm the expectation from previous studies that the RGB in all seven clusters are split and the different branches have different chemical compositions. The Mg-Al anti-correlations were well explored by the APOGEE and Gaia-ESO surveys for most globular clusters, some clusters showing bimodal distributions, while others continuous distributions. Even though the structure (i.e., bimodal vs. continuous) of Mg-Al can greatly vary, the Al-rich and Al-poor populations do not seem to have very different photometric properties, agreeing with theoretical calculations. There is no one-to-one correspondence between the Mg-Al anticorrelation shape (bimodal vs. continuous) and the structure of the RGB seen in the HST pseudo-CMDs, with the HST photometric information usually implying more complex formation/evolution histories than the spectroscopic ones. We report on finding two second generation HB stars in M5, and five second generation AGB stars in M92, which is the most metal-poor cluster to date in which second generation AGB stars have been observed.
Blue straggler stars are exotic objects present in all stellar environments whose nature and formation channels are still partially unclear. They seem to be particularly abundant in open clusters (OCs), thus offering a unique chance to tackle these problems statistically.We aim to build up a new and homogeneous catalogue of blue straggler stars (BSS) in Galactic OCs using Gaia to provide a more solid assessment of the membership of these stars. We also aim to explore possible relationships of the straggler abundance with the parent clusters structural and dynamical parameters. As a by-product, we also search for possible yellow straggler stars (YSS), which are believed to be stragglers in a more advanced evolution stage. We employed photometry, proper motions, and parallaxes extracted from Gaia DR2 for 408 Galactic star clusters and searched for stragglers within them after performing a careful membership analysis. The number of BBS emerging from our more stringent, selection criteria turns out to be significantly smaller than in previo
We present a CCD photometric survey for the search of variable stars in four open clusters namely Berkeley 69, King 5, King 7, and Berkeley 20. The time series observations were carried out for 1 and/or 2 nights for each of the clusters in the year 1998, which have led to identify nineteen variable stars in these clusters. Out of these 19 variable stars, five stars show delta Scuti like variability and two stars show W UMa type variability. In other stars, we could not find the periods and hence the type of variability due to the lack of sufficient data. The periods of delta Scuti type stars are found to be in the range of 0.13 to 0.21 days, whereas the two stars in the cluster Berkeley 20, which showed W UMa type variability have orbital periods of 0.396 and 0.418 days, respectively. Using the Gaia data, the basic parameters of the clusters Berkeley 69, King 7 and King 5 are also revised. The age and reddening are estimated to be 0.79 pm 0.09 Gyr and 0.68 pm 0.03 mag for Berkeley 69, 0.79 pm 0.09 Gyr and 1.22 pm 0.03mag for the cluster King 7 and 1.59 pm 0.19 Gyr and 0.63 pm 0.02 mag for the cluster King 5, respectively. Signature of mass segregation is found in the clusters King 7 and King 5.