No Arabic abstract
Blue straggler stars are exotic objects present in all stellar environments whose nature and formation channels are still partially unclear. They seem to be particularly abundant in open clusters (OCs), thus offering a unique chance to tackle these problems statistically.We aim to build up a new and homogeneous catalogue of blue straggler stars (BSS) in Galactic OCs using Gaia to provide a more solid assessment of the membership of these stars. We also aim to explore possible relationships of the straggler abundance with the parent clusters structural and dynamical parameters. As a by-product, we also search for possible yellow straggler stars (YSS), which are believed to be stragglers in a more advanced evolution stage. We employed photometry, proper motions, and parallaxes extracted from Gaia DR2 for 408 Galactic star clusters and searched for stragglers within them after performing a careful membership analysis. The number of BBS emerging from our more stringent, selection criteria turns out to be significantly smaller than in previo
Blue straggler stars (BSSs) are the most massive stars in a cluster formed via binary or higher-order stellar interactions. Though the exact nature of such formation scenarios is difficult to pin down, we provide observational constraints on the different possible mechanism. In this quest, we first produce a catalogue of BSSs using Gaia DR2 data. Among the 670 clusters older than 300 Myr, we identified 868 BSSs in 228 clusters and 500 BSS candidates in 208 clusters. In general, all clusters older than 1 Gyr and massive than 1000 Msun have BSSs. The average number of BSSs increases with cluster age and mass, and there is a power-law relation between the cluster mass and the maximum number of BSSs in the cluster. We introduce the term fractional mass excess (Me) for BSSs. We find that at least 54% of BSSs have Me $<$ 0.5 (likely to have gained mass through a binary mass transfer (MT)), 30% in the $1.0 <$ Me $< 0.5$ range (likely to have gained mass through a merger) and up to 16% with Me $>$ 1.0 (likely from multiple mergers/MT). We also find that the percentage of low Me BSSs increases with age, beyond 1--2 Gyr, suggesting an increase in formation through MT in older clusters. The BSSs are radially segregated, and the extent of segregation depends on the dynamical relaxation of the cluster. The statistics and trends presented here are expected to constrain the BSS formation models in open clusters.
Blue straggler stars (BSS) are well studied in globular clusters but their systematic study with secure membership determination is lacking in open clusters. We use Gaia DR2 data to determine accurate stellar membership for four intermediate-age open clusters, Melotte 66, NGC 2158, NGC 2506 and NGC 6819, and three old open clusters, Berkeley 39, NGC 188 and NGC 6791, to subsequently study their BSS populations. The BSS radial distributions of five clusters, Melotte 66, NGC 188, NGC 2158, NGC 2506, and NGC 6791, show bimodal distributions, placing them with Family II globular clusters which are of intermediate dynamical ages. The location of minima, $r_mathrm{{min}}$, in the bimodal BSS radial distributions, varies from 1.5$r_c$ to 4.0$r_c$, where $r_c$ is the core radius of the clusters. We find a positive correlation between $r_mathrm{{min}}$ and $N_{mathrm{relax}}$, the ratio of cluster age to the current central relaxation time of the cluster. We further report that this correlation is consistent in its slope, within the errors, to the slope of the globular cluster correlation between the same quantities, but with a slightly higher intercept. This is the first example in open clusters that shows BSS radial distributions as efficient probes of dynamical age. The BSS radial distributions of the remaining two clusters, Berkeley 39 and NGC 6819, are flat. The estimated $N_{mathrm{relax}}$ values of these two clusters, however, indicate that they are dynamically evolved. Berkeley 39 especially has its entire BSS population completely segregated to the inner regions of the cluster.
Aims: This paper presents a new homogeneous catalogue of blue straggler stars (BSS) in Galactic open clusters. Methods: Photometric data for 216 clusters were collected from the literature and 2782 BSS candidates were extracted from 76 of them. Results: We found that the anticorrelation of BSS frequency vs. total magnitude identified in similar studies conducted on Galactic globular clusters extends to the open cluster regime: clusters with smaller total magnitude tend to have higher BSS frequencies. Moreover, a clear correlation between the BSS frequency (obtained normalising the total number of BSS either to the total cluster mass or, for the older clusters, to the total number of clump stars) and the age of the clusters was found. A simple model is developed here to try to explain this last and new result. The model allows us to ascertain the important effect played by mass loss in the evolution of open clusters.
We present a study, based on Gaia DR2, of the population of blue straggler stars (BSS) in the open clusters Trumpler 5, Trumpler 20, and NGC 2477. All candidates were selected according to their position in the color-magnitude diagram, to their proper motion components, and to their parallax. We also looked for yellow stragglers, i.e., possible evolved blue stragglers. We found that Trumpler 5 hosts a large BSS population, which allowed us to analyze their radial distribution as a probe of the clusters dynamical status. The BSS distribution was compared with that of red giant branch stars (RGB) to evaluate mass segregation. Our results indicate that blue straggler stars are not more centrally concentrated than RGB stars in any of the clusters. The radial distribution of BSS in Trumpler 5 is flat. Additionally, using a multi-epoch radial velocity survey conducted with the high-resolution spectrograph FLAMES/GIRAFFE at VLT, we measured the radial velocities of a sample of stragglers, for the sake of comparison with the mean radial velocity and the velocity dispersion of the clusters. Based on the radial velocity variations for different epochs, we roughly classified these stars as possible close-or long-period binaries.
In this study we follow up our recent paper (Monteiro et al. 2020) and present a homogeneous sample of fundamental parameters of open clusters in our Galaxy, entirely based on Gaia DR2 data. We used published membership probability of the stars derived from Gaia DR2 data and applied our isochrone fitting code, updated as in Monteiro et al. (2020), to GB and GR Gaia DR2 data for member stars. In doing this we take into account the nominal errors in the data and derive distance, age, and extinction of each cluster. This work therefore provides parameters for 1743 open clusters and, as a byproduct, a list of likely not physical or dubious open clusters is provided as well for future investigations. Furthermore, it was possible to estimate the mean radial velocity of 831 clusters (198 of which are new and unpublished so far) using stellar radial velocities from Gaia DR2 catalog. By comparing the open cluster distances obtained from isochrone fitting with those obtained from a maximum likelihood estimate of individual member parallaxes, we found a systematic offset of $(-0.05pm0.04)$mas.