No Arabic abstract
Strong-field gravitational plane waves are often represented in either the Rosen or Brinkmann forms. These forms are related by a coordinate transformation, so they should describe essentially the same physics, but the two forms treat polarization states quite differently. Both deal well with linear polarizations, but there is a qualitative difference in the way they deal with circular, elliptic, and more general polarization states. In this article we will describe a general algorithm for constructing arbitrary polarization states in the Rosen form.
Two new observational windows have been opened to strong gravitational physics: gravitational waves, and very long baseline interferometry. This suggests observational searches for new phenomena in this regime, and in particular for those necessary to make black hole evolution consistent with quantum mechanics. We describe possible features of compact quantum objects that replace classical black holes in a consistent quantum theory, and approaches to observational tests for these using gravitational waves. This is an example of a more general problem of finding consistent descriptions of deviations from general relativity, which can be tested via gravitational wave detection. Simple models for compact modifications to classical black holes are described via an effective stress tensor, possibly with an effective equation of state. A general discussion is given of possible observational signatures, and of their dependence on properties of the colliding objects. The possibility that departures from classical behavior are restricted to the near-horizon regime raises the question of whether these will be obscured in gravitational wave signals, due to their mutual interaction in a binary coalescence being deep in the mutual gravitational well. Numerical simulation with such simple models will be useful to clarify the sensitivity of gravitational wave observation to such highly compact departures from classical black holes.
In general relativity (GR), gravitational waves (GWs) propagate the well-known plus and cross polarization modes which are the signature of a massless spin-2 field. However, diffraction of GWs caused by intervening objects along the line of sight can cause the apparent rise of additional polarizations due to GW-curvature interactions. In this paper, we continue the analysis by two of the authors of the present article, on lensing of gravitational waves beyond geometric optics. In particular, we calculate the lensing effect caused by a point-like lens, in the regime where its Schwarzschild radius $R_s$ is much smaller than the wavelength $lambda$ of the signal, itself smaller than the impact parameter $b$. In this case, the curvature of spacetime induces distortions in the polarization of the wave such that effective scalar and vector polarizations may appear. We find that the amplitude of these apparent non-GR polarizations is suppressed by a factor $R_slambda/b^2$ with respect to the amplitude of the GR-like tensor modes. We estimate the probability to develop these extra polarization modes for a nearly monochromatic GW in the Pulsar Timing Arrays band traveling through a distribution of galaxies.
Vacuum gravitational fields invariant for a non Abelian Lie algebra generated by two Killing fields whose commutator is light-like are analyzed. It is shown that they represent nonlinear gravitational waves obeying to two nonlinear superposition laws. The energy and the polarization of this family of waves are explicitely evaluated.
Assessing the probability that two or more gravitational waves (GWs) are lensed images of the same source requires an understanding of the image properties, including their relative phase shifts in strong lensing (SL). For non-precessing, circular binaries dominated by quadrupole radiation these phase shifts are degenerate with either a shift in the coalescence phase or a detector and inclination dependent shift in the orientation angle. This degeneracy is broken by the presence of higher harmonic modes with $|m| e 2$ in the former and $|m| e l$ in the latter. Precession or eccentricity will also break this degeneracy. This implies that lensed GWs will not necessarily be consistent with (unlensed) predictions from general relativity (GR). Therefore, unlike EM lensing, GW SL can lead to images with an observable modified phase evolution. However, for a wide parameter space, the lensed waveform is similar enough to an unlensed waveform that detection pipelines will still find it. For present detectors, templates with a shifted detector-dependent orientation angle have SNR differences of less than $1%$ for mass ratios up to 0.1, and less than $5%$ for precession parameters up to 0.5 and eccentricities up to 0.4 at 20Hz. The mismatch is lower than $10%$ with the alternative detector-independent coalescence phase shift. Nonetheless, for a loud enough source, even with one image it may be possible to directly identify it as a SL image from its non-GR waveform. In more extreme cases, lensing may lead to considerable distortions, and the lensed GWs may be undetected with current searches. Nevertheless, an exact template with a phase shift in Fourier space can always be constructed to fit any lensed GW. We conclude that an optimal search strategy would incorporate phase information in all stages, with an exact treatment in the final assessment of the probability of multiple lensed events.
An additional scalar degree of freedom for a gravitational wave is often predicted in theories of gravity beyond general relativity and can be used for a model-agnostic test of gravity. In this letter, we report the first direct search for the scalar-tensor mixed polarization modes of gravitational waves from compact binaries in a strong regime of gravity by analyzing the data of GW170814 and GW170817, which are the merger events of binary black holes and binary neutron stars, respectively. Consequently, we obtain the constraints on the ratio of scalar-mode amplitude to tensor-mode amplitude: $lesssim 0.18$ for GW170814 and $lesssim 0.069$ for GW170817, which are the strongest constraints obtained so far on the presence of the scalar polarization in a strong regime of gravity.