Do you want to publish a course? Click here

The initial stages of cave formation: Beyond the one-dimensional paradigm

95   0   0.0 ( 0 )
 Added by Piotr Szymczak
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

The solutional origin of limestone caves was recognized over a century ago, but the short penetration length of an undersaturated solution made it seem impossible for long conduits to develop. This is contradicted by field observations, where extended conduits, sometimes several kilometers long, are found in karst environments. However, a sharp drop in the dissolution rate of CaCO_3 near saturation provides a mechanism for much deeper penetration of reactant. The notion of a kinetic trigger - a sudden change in rate constant over a narrow concentration range - has become a widely accepted paradigm in speleogenesis modeling. However, it is based on one-dimensional models for the fluid and solute transport inside the fracture, assuming that the dissolution front is planar in the direction perpendicular to the flow. Here we show that this assumption is incorrect; a planar dissolution front in an entirely uniform fracture is unstable to infinitesimal perturbations and inevitably breaks up into highly localized regions of dissolution. This provides an alternative mechanism for cave formation, even in the absence of a kinetic trigger. Our results suggest that there is an inherent wavelength to the erosion pattern in dissolving fractures, which depends on the reaction rate and flow rate, but is independent of the initial roughness. In contrast to one-dimensional models, two-dimensional simulations indicate that there is only a weak dependence of the breakthrough time on kinetic order; localization of the flow tends to keep the undersaturation in the dissolution front above the threshold for non-linear kinetics.



rate research

Read More

135 - William B. Kilgore 2012
I describe a procedure by which one can transform scattering amplitudes computed in the four dimensional helicity scheme into properly renormalized amplitudes in the t Hooft-Veltman scheme. I describe a new renormalization program, based upon that of the dimensional reduction scheme and explain how to remove both finite and infrared-singular contributions of the evanescent degrees of freedom to the scattering amplitude.
Graphitization of the 6H-SiC(0001) surface as a function of annealing temperature has been studied by ARPES, high resolution XPS, and LEED. For the initial stage of graphitization - the 6root3 reconstructed surface - we observe sigma-bands characteristic of graphitic sp2-bonded carbon. The pi-bands are modified by the interaction with the substrate. C1s core level spectra indicate that this layer consists of two inequivalent types of carbon atoms. The next layer of graphite (graphene) formed on top of the 6root3 surface at TA=1250-1300 degree C has an unperturbed electronic structure. The annealing at higher temperatures results in the formation of a multilayer graphite film. It is shown that the atomic arrangement of the interface between graphite and the SiC(0001) surface is practically identical to that of the 6root3 reconstructed layer.
New images of young stars are revolutionizing our understanding of planet formation. ALMA detects large grains in planet-forming disks with few AU scale resolution and scattered light imaging with extreme adaptive optics systems reveal small grains suspended on the disks flared surfaces. Tantalizing evidence for young exoplanets is emerging from line observations of CO and H-alpha. In this white paper, we explore how even higher angular resolution can extend our understanding of the key stages of planet formation, to resolve accreting circumplanetary disks themselves, and to watch planets forming in situ for the nearest star-forming regions. We focus on infrared observations which are sensitive to thermal emission in the terrestrial planet formation zone and allow access to molecular tracers in warm ro-vibrational states. Successful planet formation theories will not only be able to explain the diverse features seen in disks, but will also be consistent with the rich exoplanet demographics from RV and transit surveys. While we are far from exhausting ground-based techniques, the ultimate combination of high angular resolution and high infrared sensitivity can only be achieved through mid-infrared space interferometry.
We present the critical theory of a number of zero temperature phase transitions of quantum antiferromagnets and interacting boson systems in two dimensions. The most important example is the transition of the S = 1/2 square lattice antiferromagnet between the Neel state (which breaks spin rotation invariance) and the paramagnetic valence bond solid (which preserves spin rotation invariance but breaks lattice symmetries). We show that these two states are separated by a second order quantum phase transition. The critical theory is not expressed in terms of the order parameters characterizing either state (as would be the case in Landau-Ginzburg-Wilson theory) but involves fractionalized degrees of freedom and an emergent, topological, global conservation law. A closely related theory describes the superfluid-insulator transition of bosons at half-filling on a square lattice, in which the insulator has a bond density wave order. Similar considerations are shown to apply to transitions of antiferromagnets between the valence bond solid and the Z_2 spin liquid: the critical theory has deconfined excitations interacting with an emergent U(1) gauge force. We comment on the broader implications of our results for the study of quantum criticality in correlated electron systems.
We consider zero temperature behavior of dynamic response functions of 1D systems near edges of support in momentum-energy plane $(k, omega).$ The description of the singularities of dynamic response functions near an edge $epsilon(k)$ is given by the effective Hamiltonian of a mobile impurity moving in a Luttinger liquid. For Galilean-invariant systems, we relate the parameters of such an effective Hamiltonian to the properties of the function $epsilon (k).$ This allows us to express the exponents which characterize singular response functions of spinless bosonic or fermionic liquids in terms of $epsilon(k)$ and Luttinger liquid parameters for any $k.$ For an antiferromagnetic Heisenberg spin-1/2 chain in a zero magnetic field, SU(2) invariance fixes the exponents from purely phenomenological considerations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا