Do you want to publish a course? Click here

Quantum criticality beyond the Landau-Ginzburg-Wilson paradigm

115   0   0.0 ( 0 )
 Added by T. Senthil
 Publication date 2003
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the critical theory of a number of zero temperature phase transitions of quantum antiferromagnets and interacting boson systems in two dimensions. The most important example is the transition of the S = 1/2 square lattice antiferromagnet between the Neel state (which breaks spin rotation invariance) and the paramagnetic valence bond solid (which preserves spin rotation invariance but breaks lattice symmetries). We show that these two states are separated by a second order quantum phase transition. The critical theory is not expressed in terms of the order parameters characterizing either state (as would be the case in Landau-Ginzburg-Wilson theory) but involves fractionalized degrees of freedom and an emergent, topological, global conservation law. A closely related theory describes the superfluid-insulator transition of bosons at half-filling on a square lattice, in which the insulator has a bond density wave order. Similar considerations are shown to apply to transitions of antiferromagnets between the valence bond solid and the Z_2 spin liquid: the critical theory has deconfined excitations interacting with an emergent U(1) gauge force. We comment on the broader implications of our results for the study of quantum criticality in correlated electron systems.



rate research

Read More

The phase diagram of the quantum spin-1/2 antiferromagnetic $J^{,}_{1}$-$J^{,}_{2}$ XXZ chain was obtained by Haldane using bosonization techniques. It supports three distinct phases for $0leq J^{,}_{2}/J^{,}_{1}<1/2$, i.e., a gapless algebraic spin liquid phase, a gapped long-range ordered Neel phase, and a gapped long-range ordered dimer phase. Even though the Neel and dimer phases are not related hierarchically by a pattern of symmetry breaking, it was shown that they meet along a line of quantum critical points with a U(1) symmetry and central charge $c=1$. Here, we extend the analysis made by Haldane on the quantum spin-1/2 antiferromagnetic $J^{,}_{1}$-$J^{,}_{2}$ XYZ chain using both bosonization and numerical techniques. We show that there are three Neel phases and the dimer phase that are separated from each other by six planes of phase boundaries realizing U(1) criticality when $0leq J^{,}_{2}/J^{,}_{1}<1/2$. We also show that each long-range ordered phase harbors topological point defects (domain walls) that are dual to those across the phase boundary in that a defect in one ordered phase locally binds the other type of order around its core. By using the bosonization approach, we identify the critical theory that describes simultaneous proliferation of these dual point defects, and show that it supports an emergent U(1) symmetry that originates from the discrete symmetries of the XYZ model. To confirm this numerically, we perform DMRG calculation and show that the critical theory is characterized by the central charge $c=1$ with critical exponents that are consistent with those obtained from the bosonization approach. Furthermore, we generalize the field theoretic description of direct continuous phase transition to higher dimensions, especially in $d=3$, by using a non-linear sigma model (NLSM) with a topological term.
201 - Hart Goldman , Ramanjit Sohal , 2019
It is an important open problem to understand the landscape of non-Abelian fractional quantum Hall phases which can be obtained starting from physically motivated theories of Abelian composite particles. We show that progress on this problem can be made using recently proposed non-Abelian bosonization dualities in 2+1 dimensions, which morally relate $U(N)_k$ and $SU(k)_{-N}$ Chern-Simons-matter theories. The advantage of these dualities is that regions of the phase diagram which may be obscure on one side of the duality can be accessed by condensing local operators on the other side. Starting from parent Abelian states, we use this approach to construct Landau-Ginzburg theories of non-Abelian states through a pairing mechanism. In particular, we obtain the bosonic Read-Rezayi sequence at fillings $ u=k/(kM+2)$ by starting from $k$ layers of bosons at $ u=1/2$ with $M$ Abelian fluxes attached. The Read-Rezayi states arise when $k$-clusters of the dual non-Abelian bosons condense. We extend this construction by showing that $N_f$-component generalizations of the Halperin $(2,2,1)$ bosonic states have dual descriptions in terms of $SU(N_f+1)_1$ Chern-Simons-matter theories, revealing an emergent global symmetry in the process. Clustering $k$ layers of these theories yields a non-Abelian $SU(N_f)$-singlet state at filling $ u = kN_f / (N_f + 1 + kMN_f)$.
We develop a Landau Ginzburg theory of the hidden order phase and the local moment antiferromagnetic phase of URu_2Si_2. We unify the two broken symmetries in a common complex order parameter and derive many experimentally relevant consequences such as the topology of the phase diagram in magnetic field and pressure. The theory accounts for the appearance of a moment under application of stress and the thermal expansion anomaly across the phase transitions. It identifies the low energy mode which is seen in the hidden order phase near the conmensurate wavector (0,0, 1) as the pseudo-Goldstone mode of the approximate U(1) symmetry.
It is well established that at low energies one-dimensional (1D) fermionic systems are described by the Luttinger liquid (LL) theory, that predicts phenomena like spin-charge separation, and charge fractionalization into chiral modes. Here we show through the time evolution of an electron injected into a 1D t-J model, obtained with time-dependent density matrix renormalization group, that a further fractionalization of both charge and spin takes place beyond the hydrodynamic limit. Its dynamics can be understood at the supersymmetric point (J=2t) in terms of the excitations of the Bethe-Ansatz solution. Furthermore we show that fractionalization with similar characteristics extends to the whole region corresponding to a repulsive LL.
We consider 2+1 dimensional conformal gauge theories coupled to additional degrees of freedom which induce a spatially local but long-range in time $1/(tau-tau)^2$ interaction between gauge-neutral local operators. Such theories have been argued to describe the hole-doped cuprates near optimal doping. We focus on a SU(2) gauge theory with $N_h$ flavors of adjoint Higgs fields undergoing a quantum transition between Higgs and confining phases: the $1/(tau-tau)^2$ interaction arises from a spectator large Fermi surface of electrons. The large $N_h$ expansion leads to an effective action containing fields which are bilocal in time but local in space. We find a strongly-coupled fixed point at order $1/N_h$, with dynamic critical exponent $z > 1$. We show that the entropy preserves hyperscaling, but nevertheless leads to a linear in temperature specific heat with a co-efficient which has a finite enhancement near the quantum critical point.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا