Do you want to publish a course? Click here

The Origin of [OII] Emission in Recently Quenched AGN Hosts

113   0   0.0 ( 0 )
 Added by Dale D. Kocevski
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have employed emission-line diagnostics derived from DEIMOS and NIRSPEC spectroscopy to determine the origin of the [OII] emission line observed in six AGN hosts at z~0.9. These galaxies are a subsample of AGN hosts detected in the Cl1604 supercluster that exhibit strong Balmer absorption lines in their spectra and appear to be in a post-starburst or post-quenched phase, if not for their [OII] emission. Examining the flux ratio of the [NII] to Halpha lines, we find that in five of the six hosts the dominant source of ionizing flux is AGN continuum emission. Furthermore, we find that four of the six galaxies have over twice the [OII] line luminosity that could be generated by star formation processes alone given their Halpha line luminosities. This strongly suggests that AGN-excited narrow-line emission is contaminating the [OII] line flux. A comparison of star formation rates calculated from extinction-corrected [OII] and Halpha line luminosities indicates that the former yields a five-fold overestimate of current activity in these galaxies. Our findings reveal the [OII] line to be a poor indicator of star formation activity in a majority of these moderate-luminosity Seyferts. This result bolsters our previous findings that an increased fraction of AGN at high redshifts are hosted by galaxies in a post-starburst phase. The relatively high fraction of AGN hosts in the Cl1604 supercluster that show signs of recently truncated star formation activity suggest AGN feedback may play an increasingly important role in suppressing ongoing activity in large-scale structures at high redshift.



rate research

Read More

193 - L. Shao , D. Lutz , R. Nordon 2010
Sensitive Herschel far-infrared observations can break degeneracies that were inherent to previous studies of star formation in high-z AGN hosts. Combining PACS 100 and 160um observations of the GOODS-N field with 2Msec Chandra data, we detect ~20% of X-ray AGN individually at >3sig. The host far-infrared luminosity of AGN with L2-10~10^43erg/s increases with redshift by an order of magnitude from z=0 to z~1. In contrast, there is little dependence of far-infrared luminosity on AGN luminosity, for L2-10<~10^44erg/s AGN at z>~1. We do not find a dependence of far-infrared luminosity on X-ray obscuring column, for our sample which is dominated by L2-10<10^44erg/s AGN. In conjunction with properties of local and luminous high-z AGN, we interpret these results as reflecting the interplay between two paths of AGN/host coevolution. A correlation of AGN luminosity and host star formation is traced locally over a wide range of luminosities and also extends to luminous high z AGN. This correlation reflects an evolutionary connection, likely via merging. For lower AGN luminosities, star formation is similar to that in non-active massive galaxies and shows little dependence on AGN luminosity. The level of this secular, non-merger driven star formation increasingly dominates over the correlation at increasing redshift.
We use the Sloan Digital Sky Survey to investigate the properties of massive elliptical galaxies in the local Universe (zleq0.08) that have unusually blue optical colors. Through careful inspection, we distinguish elliptical from non-elliptical morphologies among a large sample of similarly blue galaxies with high central light concentrations (c_rgeq2.6). These blue ellipticals comprise 3.7 per cent of all c_rgeq2.6 galaxies with stellar masses between 10^10 and 10^11 h^{-2} {rm M}_{sun}. Using published fiber spectra diagnostics, we identify a unique subset of 172 non-star-forming ellipticals with distinctly blue urz colors and young (< 3 Gyr) light-weighted stellar ages. These recently quenched ellipticals (RQEs) have a number density of 2.7-4.7times 10^{-5},h^3,{rm Mpc}^{-3} and sufficient numbers above 2.5times10^{10} h^{-2} {rm M}_{sun} to account for more than half of the expected quiescent growth at late cosmic time assuming this phase lasts 0.5 Gyr. RQEs have properties that are consistent with a recent merger origin (i.e., they are strong `first-generation elliptical candidates), yet few involved a starburst strong enough to produce an E+A signature. The preferred environment of RQEs (90 per cent reside at the centers of < 3times 10^{12},h^{-1}{rm M}_{sun} groups) agrees well with the `small group scale predicted for maximally efficient spiral merging onto their halo center and rules out satellite-specific quenching processes. The high incidence of Seyfert and LINER activity in RQEs and their plausible descendents may heat the atmospheres of small host halos sufficiently to maintain quenching.
We present the first results from a near-IR spectroscopic campaign of the Cl1604 supercluster at z~0.9 and the cluster RX J1821.6+6827 at z~0.82 to investigate the nature of [OII] 3727A emission in cluster galaxies at high redshift. Of the 401 members in the two systems, 131 galaxies have detectable [OII] emission with no other signs of current star-formation, as well as strong absorption features indicative of a well-established older stellar population. The combination of these features suggests that the primary source of [OII] emission in these galaxies is not the result of star-formation, but rather due to the presence of a LINER or Seyfert component. Using the NIRSPEC spectrograph on the Keck II 10-m telescope, 19 such galaxies were targeted, as well as six additional [OII]-emitting cluster members that exhibited other signs of ongoing star-formation. Nearly half (~47%) of the 19 [OII]-emitting, absorption-line dominated galaxies exhibit [OII] to Ha equivalent width ratios higher than unity, the typical value for star-forming galaxies. A majority (~68%) of these 19 galaxies are classified as LINER/Seyfert based on the emission-line ratio of [NII] and Ha, increasing to ~85% for red [OII]-emitting, absorption-line dominated galaxies. The LINER/Seyfert galaxies exhibit L([OII])/L(Ha) ratios significantly higher than that observed in populations of star-forming galaxies, suggesting that [OII] is a poor indicator of star-formation in a large fraction of high-redshift cluster members. We estimate that at least ~20% of galaxies in high-redshift clusters contain a LINER/Seyfert component that can be revealed with line ratios. We also investigate the effect this population has on the star formation rate of cluster galaxies and the post-starburst fraction, concluding that LINER/Seyferts must be accounted for if these quantities are to be meaningful.
We used a very large set of models of broad emission line (BEL) clouds in AGN to investigate the formation of the observed Fe II emission lines. We show that photoionized BEL clouds cannot produce both the observed shape and observed equivalent width of the 2200-2800A Fe II UV bump unless there is considerable velocity structure corresponding to a microturbulent velocity parameter v_turb > 100 km/s for the LOC models used here. This could be either microturbulence in gas that is confined by some phenomenon such as MHD waves, or a velocity shear such as in the various models of winds flowing off the surfaces of accretion disks. The alternative way that we can find to simultaneously match both the observed shape and equivalent width of the Fe II UV bump is for the Fe II emission to be the result of collisional excitation in a warm, dense gas. Such gas would emit very few lines other than Fe II. However, since the collisionally excited gas would constitute yet another component in an already complicated picture of the BELR, we prefer the model involving turbulence. In either model, the strength of Fe II emission relative to the emission lines of other ions such as Mg II depends as much on other parameters (either v_turb or the surface area of the collisionally excited gas) as it does on the iron abundance. Therefore, the measurement of the iron abundance from the FeII emission in quasars becomes a more difficult problem.
108 - J. Trevor Mendel 2012
We select a sample of young passive galaxies from the Sloan Digital Sky Survey Data Release 7 in order to study the processes that quench star formation in the local universe. Quenched galaxies are identified based on the contribution of A-type stars to their observed (central) spectra and relative lack of ongoing star formation; we find that such systems account for roughly 2.5 per cent of all galaxies with log M_sun >= 9.5, and have a space density of ~2.2x10^-4 Mpc^-3. We show that quenched galaxies span a range of morphologies, but that visual classifications suggest they are predominantly early-type systems. Their visual early-type classification is supported by quantitative structural measurements Sersic indices that show a notable lack of disk-dominated galaxies, suggesting that any morphological transformation associated with galaxies transition from star-forming to passive--e.g. the formation of a stellar bulge--occurs contemporaneously with the decline of their star-formation activity. We show that there is no clear excess of optical AGN in quenched galaxies, suggesting that: i) AGN feedback is not associated with the majority of quenched systems or ii) that the observability of quenched galaxies is such that the quenching phase in general outlives any associated nuclear activity. Comparison with classical post-starburst galaxies shows that both populations show similar signatures of bulge growth, and we suggest that the defining characteristic of post-starburst galaxies is the efficiency of their bulge growth rather than a particular formation mechanism.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا