Do you want to publish a course? Click here

The Origin of [OII] in Post-Starburst and Red-Sequence Galaxies in High-Redshift Clusters

297   0   0.0 ( 0 )
 Added by Brian Lemaux
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the first results from a near-IR spectroscopic campaign of the Cl1604 supercluster at z~0.9 and the cluster RX J1821.6+6827 at z~0.82 to investigate the nature of [OII] 3727A emission in cluster galaxies at high redshift. Of the 401 members in the two systems, 131 galaxies have detectable [OII] emission with no other signs of current star-formation, as well as strong absorption features indicative of a well-established older stellar population. The combination of these features suggests that the primary source of [OII] emission in these galaxies is not the result of star-formation, but rather due to the presence of a LINER or Seyfert component. Using the NIRSPEC spectrograph on the Keck II 10-m telescope, 19 such galaxies were targeted, as well as six additional [OII]-emitting cluster members that exhibited other signs of ongoing star-formation. Nearly half (~47%) of the 19 [OII]-emitting, absorption-line dominated galaxies exhibit [OII] to Ha equivalent width ratios higher than unity, the typical value for star-forming galaxies. A majority (~68%) of these 19 galaxies are classified as LINER/Seyfert based on the emission-line ratio of [NII] and Ha, increasing to ~85% for red [OII]-emitting, absorption-line dominated galaxies. The LINER/Seyfert galaxies exhibit L([OII])/L(Ha) ratios significantly higher than that observed in populations of star-forming galaxies, suggesting that [OII] is a poor indicator of star-formation in a large fraction of high-redshift cluster members. We estimate that at least ~20% of galaxies in high-redshift clusters contain a LINER/Seyfert component that can be revealed with line ratios. We also investigate the effect this population has on the star formation rate of cluster galaxies and the post-starburst fraction, concluding that LINER/Seyferts must be accounted for if these quantities are to be meaningful.



rate research

Read More

We have investigated the post-merger signatures of red-sequence galaxies in rich Abell clusters at $z lesssim$ 0.1: A119, A2670, A3330 and A389. Deep images in u, g, r and medium-resolution galaxy spectra were taken using MOSAIC 2 CCD and Hydra MOS mounted on a Blanco 4-m telescope at CTIO. Post-merger features are identified by visual inspection based on asymmetric disturbed features, faint structures, discontinuous halo structures, rings and dust lanes. We found that ~ 25% of bright (M_r < -20) cluster red-sequence galaxies show post-merger signatures in four clusters consistently. Most (~ 71%) of the featured galaxies were found to be bulge-dominated, and for the subsample of bulge-dominated red-sequence galaxies, the post-merger fraction rises to ~ 38%. We also found that roughly 4% of bulge-dominated red-sequence galaxies interact (on-going merger). A total of 42% (38% post-merger, 4% on-going merger) of galaxies show merger-related features. Compared to a field galaxy study with a similar limiting magnitude (van Dokkum 2005), our cluster study presents a similar post-merger fraction but a markedly lower on-going merger fraction. The merger fraction derived is surprisingly high for the high density of our clusters, where the fast internal motions of galaxies are thought to play a negative role in galaxy mergers. The fraction of post-merger and on-going merger galaxies can be explained as follows. Most of the post-merger galaxies may have carried over their merger features from their previous halo environment, whereas interacting galaxies interact in the current cluster in situ. According to our semi-analytic calculation, massive cluster haloes may very well have experienced tens of halo mergers over the last 4-5 Gyr; post-merger features last that long, allowing these features to be detected in our clusters today. (Abridged)
We present a study of local post-starburst galaxies (PSGs) using the photometric and spectroscopic observations from the Sloan Digital Sky Survey (SDSS) and the results from the Galaxy Zoo project. We find that the majority of our local PSG population have neither early- nor late- type morphologies but occupy a well-defined space within the colour-stellar mass diagram, most notably, the low-mass end of the green valley below the transition mass thought to be the mass division between low-mass star-forming galaxies and high-mass passively-evolving bulge-dominated galaxies. Our analysis suggests that it is likely that a local PSG will quickly transform into red, low-mass early-type galaxies as the stellar morphologies of the green PSGs largely resemble that of the early-type galaxies within the same mass range. We propose that the current population of PSGs represents a population of galaxies which is rapidly transitioning between the star-forming and the passively-evolving phases. Subsequently, these PSGs will contribute towards the build-up of the low-mass end of the red sequence once the current population of young stars fade and stars are no longer being formed. These results are consistent with the idea of downsizing where the build-up of smaller galaxies occurs at later epochs.
Using Spitzer-MIPS 24um imaging and Keck spectroscopy we examine the nature of the obscured star forming population in three clusters and three groups at z~0.9. These six systems are components of the Cl1604 supercluster, the largest structure imaged by Spitzer at redshifts near unity. We find that the average density of 24um-detected galaxies within the Cl1604 clusters is nearly twice that of the surrounding field and that this overdensity scales with the clusters dynamical state. The 24um-bright members often appear optically unremarkable and exhibit only moderate [OII] line emission due to severe obscuration. Their spatial distribution suggests they are an infalling population, but an examination of their spectral properties, morphologies and optical colors indicate they are not simply analogs of the field population that have yet to be quenched. Using stacked composite spectra, we find the 24um-detected cluster and group galaxies exhibit elevated levels of Balmer absorption compared to galaxies undergoing normal, continuous star formation. A similar excess is not observed in field galaxies with equivalent infrared luminosities, indicating a greater fraction of the detected cluster and group members have experienced a burst of star formation in the recent past compared to their counterparts in the field. Our results suggest that gas-rich galaxies at high redshift experience a temporary increase in their star formation activity as they assemble into denser environments. Using HST-ACS imaging we find that disturbed morphologies are common among the 24um-detected cluster and group members and become more prevalent in regions of higher galaxy density. We conclude that mergers are the dominant triggering mechanism responsible for the enhanced star formation found in the Cl1604 groups, while a mix of harassment and mergers are likely driving the activity of the cluster galaxies.
143 - Desika Narayanan 2013
I present a model for the star formation properties of z~2 starburst galaxies. Here, I discuss models for the formation of high-z Submillimeter Galaxies, as well as the CO-H2 conversion factor for these systems. I then apply these models to literature observations. I show that when using a functional form for XCO that varies smoothly with the physical properties in galaxies, galaxies at both local and high-z lie on a unimodal Kennicutt-Schmidt star formation law, with power-law index of ~2. The inferred gas fractions of these galaxies are large (fgas ~ 0.2-0.4), though a factor ~2 lower than most literature estimates that utilize locally-calibrated CO-H2 conversion factors.
We investigate the origin of the color-magnitude relation (CMR) observed in cluster galaxies by using a combination of a cosmological N-body simulation of a cluster of galaxies and a semi-analytic model of galaxy formation. The departure of galaxies in the bright end of the CMR with respect to the trend defined by less luminous galaxies could be explained by the influence of minor mergers.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا