Do you want to publish a course? Click here

Quantum dot-cavity strong-coupling regime measured through coherent reflection spectroscopy in a very high-Q micropillar

116   0   0.0 ( 0 )
 Added by Lo\\\"ic Lanco
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report on the coherent reflection spectroscopy of a high-quality factor micropillar, in the strong coupling regime with a single InGaAs annealed quantum dot. The absolute reflectivity measurement is used to study the characteristics of our device at low and high excitation power. The strong coupling is obtained with a g=16 mueV coupling strength in a 7.3mum diameter micropillar, with a cavity spectral width kappa=20.5 mueV (Q=65 000). The factor of merit of the strong-coupling regime, 4g/kappa=3, is the current state-of-the-art for a quantum dot-micropillar system.



rate research

Read More

The Jaynes-Cummings model, describing the interaction between a single two-level system and a photonic mode, has been used to describe a large variety of systems, ranging from cavity quantum electrodynamics, trapped ions, to superconducting qubits coupled to resonators. Recently there has been renewed interest in studying the quantum strong-coupling (QSC) regime, where states with photon number greater than one are excited. This regime has been recently achieved in semiconductor nanostructures, where a quantum dot is trapped in a planar microcavity. Here we study the quantum strong-coupling regime by calculating its photoluminescence (PL) properties under a pulsed excitation. We discuss the changes in the PL as the QSC regime is reached, which transitions between a peak around the cavity resonance to a doublet. We particularly examine the variations of the PL in the time domain, under regimes of short and long pulse times relative to the microcavity decay time.
We theoretically describe the quantum Zeno effect in a spin-photon interface represented by a charged quantum dot in a micropillar cavity. The electron spin in this system entangles with the polarization of the transmitted photons, and their continuous detection leads to the slowing of the electron spin precession in external magnetic field and induces the spin relaxation. We obtain a microscopic expression for the spin measurement rate and calculate the second and fourth order correlation functions of the spin noise, which evidence the change of the spin statistics due to the quantum Zeno effect. We demonstrate, that the quantum limit for the spin measurement can be reached for any probe frequency using the homodyne nondemolition spin measurement, which maximizes the rate of the quantum information gain.
We measure the detuning-dependent dynamics of a quasi-resonantly excited single quantum dot coupled to a micropillar cavity. The system is modeled with the dissipative Jaynes-Cummings model where all experimental parameters are determined by explicit measurements. We observe non-Markovian dynamics when the quantum dot is tuned into resonance with the cavity leading to a non-exponential decay in time. Excellent agreement between experiment and theory is observed with no free parameters providing the first quantitative description of an all-solid-state cavity QED system based on quantum dot emitters.
Circuit quantum electrodynamics allows one to probe, manipulate and couple superconducting quantum bits using cavity photons at an exquisite level. One of its cornerstones is the possibility to achieve the strong coupling which allows one to hybridize coherently light and matter. Its transposition to quantum dot circuits could offer the opportunity to use new degrees of freedom such as individual charge or spin. However, the strong coupling of quantum dot circuits to cavity photons remains to be observed. Here, we demonstrate a hybrid superconductor-quantum dot circuit which realizes the strong coupling of an individual electronic excitation to microwave photons. We observe a vacuum Rabi splitting 2g~10 MHz which exceeds by a factor of 3 the linewidth of the hybridized light-matter states. Our findings open the path to ultra-long distance entanglement of quantum dot based qubits. They could be adapted to many other circuit designs, shedding new light on the roadmap for scalability of quantum dot setups.
We study theoretically the spin-induced and photon-induced fluctuations of optical signals from a singly-charged quantum dot-microcavity structure. We identify the respective contributions of the photon-polariton interactions, in the strong light-matter coupling regime, and of the quantum back-action induced by photon detection on the spin system. Strong spin projection by a single photon is shown to be achievable, allowing the initialization and measurement of a fully-polarized Larmor precession. The spectrum of second-order correlations is deduced, displaying information on both spin and quantum dot-cavity dynamics. The presented theory thus bridges the gap between the fields of spin noise spectroscopy and quantum optics.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا