We present preliminary results on the $rho$ meson decay width from $N_f=2+1$ full QCD configurations generated by PACS-CS Collaboration. The decay width is estimated from the $P$-wave scattering phase shift for the isospin $I=1$ two-pion system. The finite size formula presented by Luscher in the center of mass frame and its extension to non-zero total momentum frame by Rummukainen and Gottlieb are employed for the calculations of the phase shift. Our calculations are carried out at $m_pi=410 {rm MeV}$ ($m_pi/m_rho=0.46$) and $a=0.091 {rm fm}$ on a $32^3times 64$ ($La=2.9 {rm fm}$) lattice.
We present a lattice QCD calculation of the $rho$ meson decay width via the $P$-wave scattering phase shift for the I=1 two-pion system. Our calculation uses full QCD gauge configurations for $N_f=2$ flavors generated using a renormalization group improved gauge action and an improved Wilson fermion action on a $12^3times24$ lattice at $m_pi/m_rho=0.41$ and the lattice spacing $1/a=0.92 {rm GeV}$. The phase shift calculated with the use of the finite size formula for the two-pion system in the moving frame shows a behavior consistent with the existence of a resonance at a mass close to the vector meson mass obtained in spectroscopy. The decay width estimated from the phase shift is consistent with the experiment, when the quark mass is scaled to the realistic value.
We perform a lattice QCD study of the $rho$ meson decay from the $N_f=2+1$ full QCD configurations generated with a renormalization group improved gauge action and a non-perturbatively $O(a)$-improved Wilson fermion action. The resonance parameters, the effective $rhotopipi$ coupling constant and the resonance mass, are estimated from the $P$-wave scattering phase shift for the isospin I=1 two-pion system. The finite size formulas are employed to calculate the phase shift from the energy on the lattice. Our calculations are carried out at two quark masses, $m_pi=410,{rm MeV}$ ($m_pi/m_rho=0.46$) and $m_pi=300,{rm MeV}$ ($m_pi/m_rho=0.35$), on a $32^3times 64$ ($La=2.9,{rm fm}$) lattice at the lattice spacing $a=0.091,{rm fm}$. We compare our results at these two quark masses with those given in the previous works using $N_f=2$ full QCD configurations and the experiment.
While the masses of light hadrons have been extensively studied in lattice QCD simulations, there exist only a few exploratory calculations of the strong decay widths of hadronic resonances. We will present preliminary results of a computation of the rho meson width obtained using $N_f=2+1$ flavor simulations. The work is based on Luschers formalism and its extension to moving frames.
We present preliminary results on the $rho$ meson decay width estimated from the scattering phase shift of the I=1 two-pion system. The phase shift is calculated by the finite size formula for non-zero total momentum frame (the moving frame) derived by Rummukainen and Gottlieb, using the $N_f=2$ improved Wilson fermion action at $m_pi/m_rho=0.41$ and $L=2.53 {rm fm}$.
Two of recent progress in lattice QCD approach to nuclear force are reported. (i) Tensor force from quenched lattice QCD: By truncating the derivative expansion of inter-nucleon potential to the strictly local terms, we obtain central force V_C(r) and tensor force V_T(r) separately from s-wave and d-wave components of Bethe-Salpeter wave function for two nucleon state with J^P=1^+. Numerical calculation is performed with quenched QCD on 32^4 lattice using the standard plaquette action at beta=5.7 with the standard Wilson quark action with kappa=0.1640, 0.1665, 0.1678. Preliminary results show that the depths of the resulting tensor force amount to 20 to 40 MeV, which is enhanced in the light quark mass region. (ii) Nuclear force from 2+1 flavor QCD with PACS-CS gauge configuration: Preliminary full QCD results are obtained by using 2+1 flavor gauge configurations generated by PACS-CS collaboration. The resulting potential has the midium range attraction of about 30 MeV similar to the preceding quenched calculations. However, the repulsive core at short distance is significantly stronger than the corresponding quenched QCD result.