Do you want to publish a course? Click here

The Sudden Death of the Nearest Quasar

362   0   0.0 ( 0 )
 Added by Kevin Schawinski
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

Galaxy formation is significantly modulated by energy output from supermassive black holes at the centers of galaxies which grow in highly efficient luminous quasar phases. The timescale on which black holes transition into and out of such phases is, however, unknown. We present the first measurement of the shutdown timescale for an individual quasar using X-ray observations of the nearby galaxy IC 2497, which hosted a luminous quasar no more than 70,000 years ago that is still seen as a light echo in `Hannys Voorwerp, but whose present-day radiative output is lower by at least 2 and more likely by over 4 orders of magnitude. This extremely rapid shutdown provides new insights into the physics of accretion in supermassive black holes, and may signal a transition of the accretion disk to a radiatively inefficient state.

rate research

Read More

We present a constructive argument to demonstrate the universality of the sudden death of entanglement in the case of two non-interacting qubits, each of which generically coupled to independent Markovian environments at zero temperature. Conditions for the occurrence of the abrupt disappearance of entanglement are determined and, most importantly, rigorously shown to be almost always satisfied: Dynamical models for which the sudden death of entanglement does not occur are seen to form a highly idealized zero-measure subset within the set of all possible quantum dynamics.
We explore the dynamics of the entanglement in a semiconductor cavity QED containing a quantum well. We show the presence of sudden birth and sudden death for some particular sets of the system parameters.
We observe the abrupt end of solar activity cycles at the Suns equator by combining almost 140 years of observations from ground and space. These terminator events appear to be very closely related to the onset of magnetic activity belonging to the next sunspot cycle at mid-latitudes and the polar-reversal process at high-latitudes. Using multi-scale tracers of solar activity we examine the timing of these events in relation to the excitation of new activity and find that the time taken for the solar plasma to communicate this transition is of the order of one solar rotation, but could be shorter. Utilizing uniquely comprehensive solar observations from the Solar Terrestrial Relations Observatory (STEREO), and Solar Dynamics Observatory (SDO) we see that this transitional event is strongly longitudinal in nature. Combined, these characteristics imply that magnetic information is communicated through the solar interior rapidly. A range of possibilities exist to explain such behavior: the presence of magnetic reconnection in the deep interior, internal gravity waves on the solar tachocline, or that the magnetic fields present in the Suns convection zone could be very large, with a poloidal field strengths reaching 50k - considerably larger than conventional explorations of solar and stellar dynamos estimate. Regardless of mechanism responsible, the rapid timescales demonstrated by the Suns global magnetic field reconfiguration present strong constraints on first-principles numerical simulations of the solar interior and, by extension, other stars.
149 - Ting Yu , J. H. Eberly 2006
When a composite quantum state interacts with its surroundings, both quantum coherence of individual particles and quantum entanglement will decay. We have shown that under vacuum noise, i.e., during spontaneous emission, two-qubit entanglement may terminate abruptly in a finite time [T. Yu and J. H. Eberly, prl {93}, 140404 (2004)], a phenomenon termed entanglement sudden death (ESD). An open issue is the behavior of mixed-state entanglement under the influence of classical noise. In this paper we investigate entanglement sudden death as it arises from the influence of classical phase noise on two qubits that are initially entangled but have no further mutual interaction.
We investigate the entanglement evolution of two qubits interacting with a common environment trough an Heisenberg XX mechanism. We reveal the possibility of realizing the phenomenon of entanglement sudden death as well as the entanglement sudden birth acting on the environment. Such analysis is of maximal interest at the light of the large applications that spin systems have in quantum information theory.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا