The role of spontaneous and piezoelectric polarization in III-V nitride heterostructure devices is discussed. Problems as well as opportunities in incorporating polarization in abrupt and graded heterojunctions composed of binary, ternary, and quaternary nitrides are outlined.
Large perpendicular magnetic anisotropy (PMA) in transition metal thin films provides a pathway for enabling the intriguing physics of nanomagnetism and developing broad spintronics applications. After decades of searches for promising materials, the energy scale of PMA of transition metal thin films, unfortunately, remains only about 1 meV. This limitation has become a major bottleneck in the development of ultradense storage and memory devices. We discovered unprecedented PMA in Fe thin-film growth on the $(000bar{1})$ N-terminated surface of III-V nitrides from first-principles calculations. PMA ranges from 24.1 meV/u.c. in Fe/BN to 53.7 meV/u.c. in Fe/InN. Symmetry-protected degeneracy between $x^2-y^2$ and $xy$ orbitals and its lift by the spin-orbit coupling play a dominant role. As a consequence, PMA in Fe/III-V nitride thin films is dominated by first-order perturbation of the spin-orbit coupling, instead of second-order in conventional transition metal/oxide thin films. This game-changing scenario would also open a new field of magnetism on transition metal/nitride interfaces.
The element-specific technique of x-ray magnetic circular dichroism (XMCD) is used to directly determine the magnitude and character of the valence band orbital magnetic moments in (III,Mn)As ferromagnetic semiconductors. A distinct dichroism is observed at the As K absorption edge, yielding an As 4p orbital magnetic moment of around -0.1 Bohr magnetons per valence band hole. This is strongly influenced by strain, indicating its crucial influence on the magnetic anisotropy. The dichroism at the Ga K edge is much weaker. The K edge XMCD signals for Mn and As both have positive sign, which indicates the important contribution of Mn 4p states to the Mn K edge spectra.
THz Time-Resolved Photoconductivity is used to probe carrier dynamics in the dilute III-V nitride GaP0.49As0.47N0.036. In these measurements a femtosecond optical pump-pulse excites electron-hole pairs, and a delayed THz pulse measures the change in conductivity. We find the photoconductivity is dominated by localized carriers. The decay of photoconductivity after excitation is consistent with bimolecular electron-hole recombination with recombination constant r = 3.2E-8 +/-0.8E-8 cm3/s. We discuss the implications for applications in solar energy.
It is critical to capture the effect due to strain and material interface for device level transistor modeling. We introduced a transferable sp3d5s* tight binding model with nearest neighbor interactions for arbitrarily strained group IV and III-V materials. The tight binding model is parameterized with respect to Hybrid functional(HSE06) calculations for varieties of strained systems. The tight binding calculations of ultra small superlattices formed by group IV and group III-V materials show good agreement with the corresponding HSE06 calculations. The application of tight binding model to superlattices demonstrates that transferable tight binding model with nearest neighbor interactions can be obtained for group IV and III-V materials.
Interface engineering is an extremely useful tool for systematically investigating materials and the various ways materials interact with each other. We describe different interface engineering strategies designed to reveal the origin of the electric and magnetic dead-layer at La0.67Sr0.33MnO3 interfaces. La0.67Sr0.33MnO3 is a key example of a strongly correlated peroskite oxide material in which a subtle balance of competing interactions gives rise to a ferromagnetic metallic groundstate. This balance, however, is easily disrupted at interfaces. We systematically vary the dopant profile, the disorder and the oxygen octahedra rotations at the interface to investigate which mechanism is responsible for the dead layer. We find that the magnetic dead layer can be completely eliminated by compositional interface engineering such that the polar discontinuity at the interface is removed. This, however, leaves the electrical dead-layer largely intact. We find that deformations in the oxygen octahedra network at the interface are the dominant cause for the electrical dead layer.
Debdeep Jena
,John Simon
,Albert Wang
.
(2010)
.
"Polarization-Engineering in III-V Nitride Heterostructures: New Opportunities For Device Design"
.
Debdeep Jena
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا