Do you want to publish a course? Click here

Produits Gamma et vecteurs propres de matrices de Cartan

541   0   0.0 ( 0 )
 Added by Vadim Schechtman
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

We propose a formula expressing Perron - Frobenius eigenvectors of Cartan matrices in terms of products of values of the Gamma function.



rate research

Read More

Nous montrons que les equations du rep`ere mobile des surfaces de Bonnet conduisent `a une paire de Lax matricielle isomonodromique dordre deux pour la sixi`eme equation de Painleve. We show that the moving frame equations of Bonnet surfaces can be extrapolated to a second order, isomonodromic matrix Lax pair of the sixth Painleve equation.
103 - Olivier Marchal 2017
The goal of this Habilitation `a diriger des recherches is to present two different applications, namely computations of certain partition functions in probability and applications to integrable systems, of the topological recursion developed by B. Eynard and N. Orantin in 2007. Since its creation, the range of applications of the topological recursion has been growing and many results in different fields have been obtained. The first aspect that I will develop deals with the historical domain of the topological recursion: random matrix integrals. I will review the formalism of the topological recursion as well as how it can be used to obtain asymptotic $frac{1}{N}$ series expansion of various matrix integrals. In particular, a key feature of the topological recursion is that it can recover from the leading order of the asymptotic all sub-leading orders with elementary computations. This method is particularly well known and fruitful in the case of hermitian matrix integrals, but I will also show that the general method can be used to cover integrals with hard edges, integrals over unitary matrices and much more. In the end, I will also briefly mention the generalization to $beta$-ensembles. In a second chapter, I will review the connection between the topological recursion and the study of integrable systems having a Lax pair representation. Most of the results presented there will be illustrated by the case of the famous six Painleve equations. Though the formalism used in this chapter may look completely disconnected from the previous one, it is well known that the local statistics of eigenvalues in random matrix theory exhibit a universality phenomenon and that the encountered universal systems are precisely driven by some solutions of the Painlev{e} equations. As I will show, the connection can be made very explicit with the topological recursion formalism.
We describe the behaviour of the rank of the Mordell-Weil group of the Picard variety of the generic fibre of a fibration in terms of local contributions given by averaging traces of Frobenius acting on the fibres. The results give a reinterpretation of Tates conjecture (for divisors) and generalises previous results of Nagao, Rosen-Silverman and the authors.
We describe a conjectural construction (in the spirit of Hilberts 12th problem) of units in abelian extensions of certain base fields which are neither totally real nor CM. These base fields are quadratic extensions with exactly one complex place of a totally real number field F, and are referred to as Almost Totally real (ATR) extensions. Our construction involves certain null-homologous topological cycles on the Hilbert modular variety attached to F. The special units are the images of these cycles under a map defined by integration of weight two Eisenstein series on GL_2(F). This map is formally analogous to the higher Abel-Jacobi maps that arise in the theory of algebraic cycles. We show that our conjecture is compatible with Starks conjecture for ATR extensions; it is, however, a genuine strengthening of Starks conjecture in this context since it gives an analytic formula for the arguments of the Stark units and not just for their absolute values. The last section provides numerical evidences for our conjecture.
In this paper we present novel integrable symplectic maps, associated with ordinary difference equations, and show how they determine, in a remarkably diverse manner, the integrability, including Lax pairs and the explicit solutions, for integrable partial difference equations which are the discrete counterparts of integrable partial differential equations of Korteweg-de Vries-type (KdV-type). As a consequence it is demonstrated that several distinct Hamiltonian systems lead to one and the same difference equation by means of the Liouville integrability framework. Thus, these integrable symplectic maps may provide an efficient tool for characterizing, and determining the integrability of, partial difference equations.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا