Do you want to publish a course? Click here

Enhancing the critical current in quasiperiodic pinning arrays below and above the matching magnetic flux

270   0   0.0 ( 0 )
 Added by Vyacheslav Misko
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

Quasiperiodic pinning arrays, as recently demonstrated theoretically and experimentally using a five-fold Penrose tiling, can lead to a significant enhancement of the critical current Ic as compared to traditional regular pinning arrays. However, while regular arrays showed only a sharp peak in Ic(Phi) at the matching flux Phi1 and quasiperiodic arrays provided a much broader maximum at Phi<Phi1, both types of pinning arrays turned out to be inefficient for fluxes larger than Phi1. We demonstrate theoretically and experimentally the enhancement of Ic(Phi) for Phi>Phi1 by using non-Penrose quasiperiodic pinning arrays. This result is based on a qualitatively different mechanism of flux pinning by quasiperiodic pinning arrays and could be potentially useful for applications in superconducting micro-electronic devices operating in a broad range of magnetic fields.



rate research

Read More

168 - V.R. Misko , Franco Nori 2012
We study magnetic flux interacting with arrays of pinning sites (APS) placed on vertices of hyperbolic tesselations (HT). We show that, due to the gradient in the density of pinning sites, HT APS are capable of trapping vortices for a broad range of applied magnetic fluxes. Thus, the penetration of magnetic field in HT APS is essentially different from the usual scenario predicted by the Bean model. We demonstrate that, due to the enhanced asymmetry of the surface barrier for vortex entry and exit, this HT APS could be used as a capacitor to store magnetic flux.
60 - V. R. Misko 2005
We study the critical depinning current J_c, as a function of the applied magnetic flux Phi, for quasiperiodic (QP) pinning arrays, including one-dimensional (1D) chains and two-dimensional (2D) arrays of pinning centers placed on the nodes of a five-fold Penrose lattice. In 1D QP chains of pinning sites, the peaks in J_c(Phi) are shown to be determined by a sequence of harmonics of long and short periods of the chain. This sequence includes as a subset the sequence of successive Fibonacci numbers. We also analyze the evolution of J_c(Phi) while a continuous transition occurs from a periodic lattice of pinning centers to a QP one; the continuous transition is achieved by varying the ratio gamma = a_S/a_L of lengths of the short a_S and the long a_L segments, starting from gamma = 1 for a periodic sequence. We find that the peaks related to the Fibonacci sequence are most pronounced when gamma is equal to the golden mean. The critical current J_c(Phi) in QP lattice has a remarkable self-similarity. This effect is demonstrated both in real space and in reciprocal k-space. In 2D QP pinning arrays (e.g., Penrose lattices), the pinning of vortices is related to matching conditions between the vortex lattice and the QP lattice of pinning centers. Although more subtle to analyze than in 1D pinning chains, the structure in J_c(Phi) is determined by the presence of two different kinds of elements forming the 2D QP lattice. Indeed, we predict analytically and numerically the main features of J_c(Phi) for Penrose lattices. Comparing the J_cs for QP (Penrose), periodic (triangular) and random arrays of pinning sites, we have found that the QP lattice provides an unusually broad critical current J_c(Phi), that could be useful for practical applications demanding high J_cs over a wide range of fields.
We study experimentally the critical depinning current Ic versus applied magnetic field B in Nb thin films which contain 2D arrays of circular antidots placed on the nodes of quasiperiodic (QP) fivefold Penrose lattices. Close to the transition temperature Tc we observe matching of the vortex lattice with the QP pinning array, confirming essential features in the Ic(B) patterns as predicted by Misko et al. [Phys. Rev. Lett, vol.95, 177007 (2005)]. We find a significant enhancement in Ic(B) for QP pinning arrays in comparison to Ic in samples with randomly distributed antidots or no antidots.
Polycrystalline La2-xPrxCa2xBa2Cu4+2xOz (LPCaBCO) compounds with x = 0.1 - 0.5 were synthesized by solid-state reaction method and studied by room temperature X-ray diffraction, dc resistivity, dc magnetization and iodometry. The superconducting transition temperatures in these tetragonal triple perovskite compounds increases from 32 to 62 K (Tconset values) with increasing dopant concentration. The mixing of rare earth La3+ and Pr3+/4+ ions at rare earth site (La3+) along with substitution of divalent Ca2+ results in the shrinkage of unit cell volume. The contraction of unit cell volume due to larger ion being substituted by smaller ions, gives rise to creation of pinning centers in the unit cell leading to increase in critical current density and flux pinning
124 - S.X. Dou 2002
Doping of MgB2 by nano-SiC and its potential for improvement of flux pinning was studied for MgB2-x(SiC)x/2 with x = 0, 0.2 and 0.3 and a 10wt% nano-SiC doped MgB2 samples. Co-substitution of B by Si and C counterbalanced the effects of single-element doping, decreasing Tc by only 1.5K, introducing pinning centres effective at high fields and temperatures and enhancing Jc and Hirr significantly. Compared to the non-doped sample, Jc for the 10wt% doped sample increased by a factor of 32 at 5K and 8T, 42 at 20K and 5T, and 14 at 30K and 2T. At 20K, which is considered to be a benchmark operating temperature for MgB2, the best Jc for the doped sample was 2.4x10^5A/cm2 at 2T, which is comparable to Jc of the best Ag/Bi-2223 tapes. At 20K and 4T, Jc was 36,000A/cm2, which was twice as high as for the best MgB2 thin films and an order of magnitude higher than for the best Fe/MgB2 tapes. Because of such high performance, it is anticipated that the future MgB2 conductors will be made using the formula of MgBxSiyCz instead of the pure MgB2.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا