Do you want to publish a course? Click here

Electrochemical doping of graphene

132   0   0.0 ( 0 )
 Added by David Horsell
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

The electrical properties of graphene are known to be modified by chemical species that interact with it. We investigate the effect of doping of graphene-based devices by toluene (C6H5CH3). We show that this effect has a complicated character. Toluene is seen to act as a donor, transferring electrons to the graphene. However, the degree of doping is seen to depend on the magnitude and polarity of an electric field applied between the graphene and a nearby electrode. This can be understood in terms of an electrochemical reaction mediated by the graphene crystal.



rate research

Read More

Making devices with graphene necessarily involves making contacts with metals. We use density functional theory to study how graphene is doped by adsorption on metal substrates and find that weak bonding on Al, Ag, Cu, Au and Pt, while preserving its unique electronic structure, can still shift the Fermi level with respect to the conical point by $sim 0.5$ eV. At equilibrium separations, the crossover from $p$-type to $n$-type doping occurs for a metal work function of $sim 5.4$ eV, a value much larger than the graphene work function of 4.5 eV. The numerical results for the Fermi level shift in graphene are described very well by a simple analytical model which characterizes the metal solely in terms of its work function, greatly extending their applicability.
We present an electrochemical route for the integration of graphene with light sensitive copper-based alloys used in optoelectronic applications. Graphene grown using chemical vapor deposition (CVD) transferred to glass is found to be a robust substrate on which photoconductive Cu_{x}S films of 1-2 um thickness can be deposited. The effect of growth parameters on the morphology and photoconductivity of Cu_{x}S films is presented. Current-voltage characterization and photoconductivity decay experiments are performed with graphene as one contact and silver epoxy as the other.
165 - M. Bruna , A. K. Ott , M. Ijas 2014
We investigate the evolution of the Raman spectrum of defected graphene as a function of doping. Polymer electrolyte gating allows us to move the Fermi level up to 0.7eV, as monitored by textit{in-situ} Hall-effect measurements. For a given number of defects, we find that the intensities of the D and D peaks decrease with increasing doping. We assign this to an increased total scattering rate of the photoexcited electrons and holes, due to the doping-dependent strength of electron-electron scattering. We present a general relation between D peak intensity and defects valid for any doping level
153 - C. Stampfer , L. Wirtz , A. Jungen 2007
We present spatially resolved Raman images of the G and 2D lines of single-layer graphene flakes. The spatial fluctuations of G and 2D lines are correlated and are thus shown to be affiliated with local doping domains. We investigate the position of the 2D line -- the most significant Raman peak to identify single-layer graphene -- as a function of charging up to |n|~4 10^12 cm^-2. Contrary to the G line which exhibits a strong and symmetric stiffening with respect to electron and hole-doping, the 2D line shows a weak and slightly asymmetric stiffening for low doping. Additionally, the line width of the 2D line is, in contrast to the G line, doping-independent making this quantity a reliable measure for identifying single-layer graphene.
By employing x-ray photoelectron spectroscopy (XPS), we have been able to establish the occurrence of charge-transfer doping in few-layer graphene covered with electron acceptor (TCNE) and donor (TTF) molecules. We have performed quantitative estimates of the extent of charge transfer in these complexes and elucidated the origin of unusual shifts of their Raman G bands and explained the differences in the dependence of conductivity on n- and p-doping. The study unravels the cause of the apparent difference between the charge-transfer doping and electrochemical doping.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا