Do you want to publish a course? Click here

Deconvolution of Images from BLAST 2005: Insight into the K3-50 and IC 5146 Star-Forming Regions

479   0   0.0 ( 0 )
 Added by Arabindo Roy
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present an implementation of the iterative flux-conserving Lucy-Richardson (L-R) deconvolution method of image restoration for maps produced by the Balloon-borne Large Aperture Submillimeter Telescope (BLAST). We have analyzed its performance and convergence extensively through simulations and cross-correlations of the deconvolved images with available highresolution maps. We present new science results from two BLAST surveys, in the Galactic regions K3-50 and IC 5146, further demonstrating the benefits of performing this deconvolution. We have resolved three clumps within a radius of 4.5 inside the star-forming molecular cloud containing K3-50. Combining the well-resolved dust emission map with available multi-wavelength data, we have constrained the Spectral Energy Distributions (SEDs) of five clumps to obtain masses (M), bolometric luminosities (L), and dust temperatures (T). The L-M diagram has been used as a diagnostic tool to estimate the evolutionary stages of the clumps. There are close relationships between dust continuum emission and both 21-cm radio continuum and 12CO molecular line emission. The restored extended large scale structures in the Northern Streamer of IC 5146 have a strong spatial correlation with both SCUBA and high resolution extinction images. A dust temperature of 12 K has been obtained for the central filament. We report physical properties of ten compact sources, including six associated protostars, by fitting SEDs to multi-wavelength data. All of these compact sources are still quite cold (typical temperature below ~ 16 K) and are above the critical Bonner-Ebert mass. They have associated low-power Young Stellar Objects (YSOs). Further evidence for starless clumps has also been found in the IC 5146 region.



rate research

Read More

200 - Peter Barnes 2015
We report new imaging polarimetry observations of the Galactic compact HII region K3-50 using CanariCam at the Gran Telescopio Canarias. We use a standard polarimetric analysis technique, first outlined by Aitken, to decompose the observed polarisation images centred at 8.7, 10.3, and 12.5 $mu$m into the emissive and absorptive components from silicate grains that are aligned with the local magnetic field. These components reveal the spatially-resolved magnetic field structures across the mid-infrared emission area of K3-50. We examine these structures and show that they are consistent with previously observed features and physical models of K3-50, such as the molecular torus and the ionised outflow. We propose a 3D geometry for all the structures seen at different wavelengths. We also compute relevant physical quantities in order to estimate the associated magnetic field strengths that would be implied under various physical assumptions. We compare these results with MHD simulations of protostar formation that predict the magnetic field strength and configuration. We find that the magnetic field may be dynamically important in the innermost 0.2 pc of the molecular torus, but that the torus is more likely to be rotationally-supported against gravity outside this radius. Similarly, magnetic fields are unlikely to dominate the {em global} physics of the ionised outflow, but they may be important in helping confine the flow near the cavity wall in some locations. Ours is the first application of the Aitken technique to spatially-resolved magnetic field structures in multiple layers along the line of sight, effectively a method of polarisation tomography.
This paper presents spectra in the 2 to 20 micron range of quiescent cloud material located in the IC 5146 cloud complex. The spectra were obtained with NASAs Infrared Telescope Facility (IRTF) SpeX instrument and the Spitzer Space Telescopes Infrared Spectrometer. We use these spectra to investigate dust and ice absorption features in pristine regions of the cloud that are unaltered by embedded stars. We find that the H2O-ice threshold extinction is 4.03+/-0.05 mag. Once foreground extinction is taken into account, however, the threshold drops to 3.2 mag, equivalent to that found for the Taurus dark cloud, generally assumed to be the touchstone quiescent cloud against which all other dense cloud and embedded young stellar object observations are compared. Substructure in the trough of the silicate band for two sources is attributed to CH3OH and NH3 in the ices, present at the ~2% and ~5% levels, respectively, relative to H2O-ice. The correlation of the silicate feature with the E(J-K) color excess is found to follow a much shallower slope relative to lines of sight that probe diffuse clouds, supporting the previous results by Chiar et al. (2007).
We present the results of a comprehensive infrared, submillimetre, and millimetre continuum emission study of isolated low-mass star-forming cores in 32 Bok globules, with the aim to investigate the process of star formation in these regions. The submillimetre and millimetre dust continuum emission maps together with the spectral energy distributions are used to model and derive the physical properties of the star-forming cores, such as luminosities, sizes, masses, densities, etc. Comparisons with ground-based near-infrared and space-based mid and far-infrared images from Spitzer are used to reveal the stellar content of the Bok globules, association of embedded young stellar objects with the submm dust cores, and the evolutionary stages of the individual sources. Submm dust continuum emission was detected in 26 out of the 32 globule cores observed. For 18 globules with detected (sub)mm cores we derive evolutionary stages and physical parameters of the embedded sources. We identify nine starless cores, most of which are presumably prestellar, nine Class 0 protostars, and twelve Class I YSOs. Specific source properties like bolometric temperature, core size, and central densities are discussed as function of evolutionary stage. We find that at least two thirds (16 out of 24) of the star-forming globules studied here show evidence of forming multiple stars on scales between 1,000 and 50,000 AU. However, we also find that most of these small prototstar and star groups are comprised of sources with different evolutionary stages, suggesting a picture of slow and sequential star formation in isolated globules
We model the dynamical evolution of star forming regions with a wide range of initial properties. We follow the evolution of the regions substructure using the Q-parameter, we search for dynamical mass segregation using the Lambda_MSR technique, and we also quantify the evolution of local density around stars as a function of mass using the Sigma_LDR method. The amount of dynamical mass segregation measured by Lambda_MSR is generally only significant for subvirial and virialised, substructured regions - which usually evolve to form bound clusters. The Sigma_LDR method shows that massive stars attain higher local densities than the median value in all regions, even those that are supervirial and evolve to form (unbound) associations. We also introduce the Q-Sigma_LDR plot, which describes the evolution of spatial structure as a function of mass-weighted local density in a star forming region. Initially dense (>1000 stars pc^{-2}), bound regions always have Q >1, Sigma_LDR > 2 after 5Myr, whereas dense unbound regions always have Q < 1, Sigma_LDR > 2 after 5Myr. Less dense regions (<100 stars pc^{-2}) do not usually exhibit Sigma_LDR > 2 values, and if relatively high local density around massive stars arises purely from dynamics, then the Q-Sigma_LDR plot can be used to estimate the initial density of a star forming region.
Maser emission plays an important role as a tool in star formation studies. It is widely used for deriving kinematics, as well as the physical conditions of different structures, hidden in the dense environment very close to the young stars, for example associated with the onset of jets and outflows. We will summarize the recent observational and theoretical progress on this topic since the last maser symposium: the IAU Symposium 242 in Alice Springs.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا