Do you want to publish a course? Click here

CRT: A numerical tool for propagating ultra-high energy cosmic rays through Galactic magnetic field models

112   0   0.0 ( 0 )
 Added by Michael Sutherland
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

Deflection of ultra high energy cosmic rays (UHECRs) by the Galactic magnetic field (GMF) may be sufficiently strong to hinder identification of the UHECR source distribution. A common method for determining the effect of GMF models on source identification efforts is backtracking cosmic rays. We present the public numerical tool CRT for propagating charged particles through Galactic magnetic field models by numerically integrating the relativistic equation of motion. It is capable of both forward- and back-tracking particles with varying compositions through pre-defined and custom user-created magnetic fields. These particles are injected from various types of sources specified and distributed according to the user. Here, we present a description of some source and magnetic field model implementations, as well as validation of the integration routines.



rate research

Read More

The Galactic magnetic field, locally observed to be on the order of a few $mu$G, is sufficiently strong to induce deflections in the arrival directions of ultra-high energy cosmic rays. We present a method that establishes measures of self-consistency for hypothesis sets comprised of cosmic magnetic field models and ultra-high energy cosmic ray composition and source distributions. The method uses two independent procedures to compare the backtracked velocity vectors outside the magnetic field model to the distribution of backtracked velocity directions of many isotropic observations with the same primary energies. This allows for an estimate of the statistical consistency between the observed data and simulated isotropic observations. Inconsistency with the isotropic expectation of source correlation in both procedures is interpreted as the hypothesis set providing a self-consistent description of GMF and UHECR properties for the cosmic ray observations.
We present the simulation framework CRPropa version 3 designed for efficient development of astrophysical predictions for ultra-high energy particles. Users can assemble modules of the most relevant propagation effects in galactic and extragalactic space, include their own physics modules with new features, and receive on output primary and secondary cosmic messengers including nuclei, neutrinos and photons. In extension to the propagation physics contained in a previous CRPropa version, the new version facilitates high-performance computing and comprises new physical features such as an interface for galactic propagation using lensing techniques, an improved photonuclear interaction calculation, and propagation in time dependent environments to take into account cosmic evolution effects in anisotropy studies and variable sources. First applications using highlighted features are presented as well.
133 - Hajime Takami 2011
The propagation trajectories of ultra-high-energy cosmic rays (UHECRs) are inevitably affected by Galactic magnetic field (GMF). Because of the inevitability, the importance of the studies of the propagation in GMF have increased to interpret the results of recent UHECR experiments. This article reviews the effects of GMF to the propagation and arrival directions of UHECRs and introduces recent studies to constrain UHECR sources.
We present a method to correct for deflections of ultra-high energy cosmic rays in the galactic magnetic field. We perform these corrections by simulating the expected arrival directions of protons using a parameterization of the field derived from Faraday rotation and synchrotron emission measurements. To evaluate the method we introduce a simulated astrophysical scenario and two observables designed for testing cosmic ray deflections. We show that protons can be identified by taking advantage of the galactic magnetic field pattern. Consequently, cosmic ray deflection in the galactic field can be verified experimentally. The method also enables searches for directional correlations of cosmic rays with source candidates.
We reconstruct the trajectories of ultra-high energy cosmic rays (UHECR) - observed by the AGASA experiment - in the Galactic magnetic field assuming that all particles have the same charge. We then study correlations between the reconstructed events and BL Lacs. The correlations have significance below 10^{-3} in the case of particles with charge +1. In the case of charge -1 the correlations are absent. We interpret this as evidence that protons are present in the flux of UHECR. Observed correlation provides an independent evidence that BL Lacs emit UHECR.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا