Do you want to publish a course? Click here

Propagation of Ultra-high-energy Cosmic Rays in Galactic Magnetic Field

124   0   0.0 ( 0 )
 Added by Hajime Takami
 Publication date 2011
  fields Physics
and research's language is English
 Authors Hajime Takami




Ask ChatGPT about the research

The propagation trajectories of ultra-high-energy cosmic rays (UHECRs) are inevitably affected by Galactic magnetic field (GMF). Because of the inevitability, the importance of the studies of the propagation in GMF have increased to interpret the results of recent UHECR experiments. This article reviews the effects of GMF to the propagation and arrival directions of UHECRs and introduces recent studies to constrain UHECR sources.



rate research

Read More

We present a method to correct for deflections of ultra-high energy cosmic rays in the galactic magnetic field. We perform these corrections by simulating the expected arrival directions of protons using a parameterization of the field derived from Faraday rotation and synchrotron emission measurements. To evaluate the method we introduce a simulated astrophysical scenario and two observables designed for testing cosmic ray deflections. We show that protons can be identified by taking advantage of the galactic magnetic field pattern. Consequently, cosmic ray deflection in the galactic field can be verified experimentally. The method also enables searches for directional correlations of cosmic rays with source candidates.
153 - Daniel Kuempel 2014
More than 100 years after the discovery of cosmic rays and various experimental efforts, the origin of ultra-high energy cosmic rays (E > 100 PeV) remains unclear. The understanding of production and propagation effects of these highest energetic particles in the universe is one of the most intense research fields of high-energy astrophysics. With the advent of advanced simulation engines developed during the last couple of years, and the increase of experimental data, we are now in a unique position to model source and propagation parameters in an unprecedented precision and compare it to measured data from large scale observatories. In this paper we revisit the most important propagation effects of cosmic rays through photon backgrounds and magnetic fields and introduce recent developments of propagation codes. Finally, by comparing the results to experimental data, possible implications on astrophysical parameters are given.
258 - Todor Stanev 2008
We briefly describe the energy loss processes of ultrahigh energy protons, heavier nuclei and gamma rays in interactions with the universal photon fields of the Universe. We then discuss the modification of the accelerated cosmic ray energy spectrum in propagation by the energy loss processes and the charged cosmic ray scattering in the extragalactic magnetic fields. The energy lost by the ultrahigh energy cosmic rays goes into gamma rays and neutrinos that carry additional information about the sources of highest energy particles. The new experimental results of the HiRes and the Auger collaborations are discussed in view of the predictions from propagation calculations.
155 - M.T. Dova 2016
The origin of the ultra high energy cosmic rays (UHECR) with energies above E > 1017eV, is still unknown. The discovery of their sources will reveal the engines of the most energetic astrophysical accelerators in the universe. This is a written version of a series of lectures devoted to UHECR at the 2013 CERN-Latin-American School of High-Energy Physics. We present an introduction to acceleration mechanisms of charged particles to the highest energies in astrophysical objects, their propagation from the sources to Earth, and the experimental techniques for their detection. We also discuss some of the relevant observational results from Telescope Array and Pierre Auger Observatory. These experiments deal with particle interactions at energies orders of magnitude higher than achieved in terrestrial accelerators.
145 - Todor Stanev 2007
We discuss the basic difficulties in understanding the origin of the highest energy particles in the Universe - the ultrahigh energy cosmic rays (UHECR). It is difficult to imagine the sources they are accelerated in. Because of the strong attenuation of UHECR on their propagation from the sources to us these sources should be at cosmologically short distance from us but are currently not identified. We also give information of the most recent experimental results including the ones reported at this conference and compare them to models of the UHECR origin.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا